

#### ASSEMBLY C CSI REPORT NAVAL SUPPORT ACTIVITY MEMPHIS MILLINGTON, TENNESSEE



SWMUs 26, 27, AND 62

**REVISION 2** 

CTO-094

Contract No: N62467-89-D-0318

#### Prepared for:

Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina



Prepared by:

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 (901) 383-9115

#### **Table of Contents**

SWMU 26 Confirmatory Sampling Investigation — SWMU 26 — N-102 Battery Acid Neutralization Unit Appendix A Analytical Results — N-102 Battery Acid Neutralization Unit Contents Appendix B Analytical Results — CSI Samples Confirmatory Sampling Investigation - SWMU 27 - Northside Sewage SWMU 27 Treatment Plant Appendix A Analytical Data SWMU 62 Confirmatory Sampling Investigation — SWMU 62 — M-21 Arresting Gear Appendix A DPT Piezocone and Hydrocone Plots Appendix B Analytical Data Attachment 1 Data Validation Report — Assembly C Attachment 2 Miscellaneous Soil Boring and Monitoring Well Logs Attachment 3 Dieldrin Technical Memorandum

ASSEMBLY C CSI REPORT NAVAL SUPPORT ACTIVITY MEMPHIS MILLINGTON, TENNESSEE

RCRA FACILITY INVESTIGATION SWMU 26 — N-102 BATTERY ACID NEUTRALIZATION UNIT



#### **REVISION 2**

CTO-094

Contract No: N62467-89-D-0318

#### Prepared for:

Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina



#### Prepared by:

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 (901) 383-9115

#### **Table of Contents**

| EXEC                                           | UTIVE SUMMARY                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.0                                            | INTRODUCTION 1-1                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 2.0                                            | SITE DESCRIPTION AND HISTORICAL INFORMATION                                                                                                                                                                                                    |  |  |  |  |  |  |
| <b>3.</b> 0                                    | PRELIMINARY INVESTIGATIONS                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 4.0                                            | FIELD INVESTIGATIONS AND METHODOLOGY  4.1 Investigation of Surface and Subsurface Soil  4.2 Sampling Rationale and Methods  4.3 Sample Processing and Chain-of-Custody Procedure  4.4 Grouting Procedures  4.5 Decontamination Procedures  4.6 |  |  |  |  |  |  |
| 5.0                                            | GEOLOGY AND HYDROGEOLOGY                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 6.0                                            | NATURE AND EXTENT OF CONTAMINATION  6.1 Background and Reference Criteria  6.2 Soil Sample Analytical Results  6.2.1 Surface Soil  6.2.2 Subsurface Soil  6.3 Summary of Nature and Extent  6-7                                                |  |  |  |  |  |  |
| 7.0                                            | PRELIMINARY RISK EVALUATION                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 8.0                                            | CONCLUSIONS AND RECOMMENDATIONS 8-:                                                                                                                                                                                                            |  |  |  |  |  |  |
| 9.0                                            | REFERENCES                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| List of Figures                                |                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure | 1-2Digital Orthophotograph1-32-1Site Map2-22-2Construction Details — N-102 Battery Acid Neutralization Unit2-34-1Soil Sample Locations4-4                                                                                                      |  |  |  |  |  |  |

| Figure 6-2 | re 6-2 Soil Contaminants Summary                                                                         |  |
|------------|----------------------------------------------------------------------------------------------------------|--|
| Figure 6-3 | Transfer from Soil to Groundwater SSL Exceedances 6-10                                                   |  |
|            | List of Tables                                                                                           |  |
| Table 6-1  | Detected Concentrations of Metals, Pesticides, and SVOCs in Surface Soil                                 |  |
| Table 6-2  | Detected Concentrations of Metals in Subsurface Soil 6-6                                                 |  |
| Table 7-1  | PRE for Residential and Commercial Carcinogens                                                           |  |
| Table 7-2  | PRE for Residential and Commercial Noncarcinogens                                                        |  |
|            | List of Appendices                                                                                       |  |
|            | Analytical Results — N-102 Battery Acid Neutralization Unit Contents<br>Analytical Results — CSI Samples |  |

#### LIST OF ACRONYMS AND ABBREVIATIONS

BRAC Base Realignment and Closure

bls below land surface cm/sec centimeters per second

CSI Confirmatory Sampling Investigation

DQO Data Quality Objective E/A&H EnSafe/Allen & Hoshall

HI Hazard Index

ILCR Incremental Lifetime Excess Cancer Risk

 $\mu g/L$  micrograms per liter mg/kg milligrams per kilogram

ND not detected

NET National Environmental Testing, Incorporated

NSA Naval Support Activity (formerly Naval Air Station)

PCBs polychlorinated biphenyls
PRE Preliminary Risk Evaluation
RBC risk-based concentration

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation

RR risk ratio

SIP Site Investigation Plan

SOUTHNAVFACENGCOM Southern Division Naval Facilities Engineering Command

SSL soil screening level

SVOC semivolatile organic compound SWMU solid waste management unit

THQ target hazard quotient

TR target risk

USGS U.S. Geological Survey

#### **EXECUTIVE SUMMARY**

The Assembly C Site Investigation Plans for Naval Support Activity Memphis proposed two phases of investigation for a Confirmatory Sampling Investigation (CSI) at Solid Waste Management Unit (SWMU) 26, the Building N-102 Battery Acid Neutralization Unit. The first phase consisted of a subsurface soil sampling investigation using Geoprobe equipment. Based on the results of the first phase, the second phase, consisting of installing and sampling soil borings and monitoring wells, is not required. This report summarizes the activities conducted during the CSI's first phase and resulting findings and conclusions.

During the first phase of the SWMU 26 CSI, subsurface soil samples collected from three intervals at four sample stations were analyzed for six metals (arsenic, cadmium, lead, mercury, nickel, and zinc.) Detected concentrations of metals were less than two times the background reference concentration (two times the mean background concentration) and/or United States Environmental Protection Agency soil screening levels.

To finalize the Resource Conservation and Recovery Act closure of the SWMU, one surface soil sample was collected immediately adjacent to the neutralization unit and analyzed for semivolatile organic compounds, pesticides/polychlorinated biphenyls, and Appendix IX metals. These sample results were used to prepare a Preliminary Risk Evaluation (PRE), which indicated the property is suitable for lease for either commercial or residential land use.

Based on the results of the first phase, no further action is recommended for SWMU 26.

#### 1.0 INTRODUCTION

As part of the U.S. Navy Installation Restoration Program, the following Confirmatory Sampling Investigation (CSI) report has been prepared for Solid Waste Management Unit (SWMU) 26, the N-102 Battery Acid Neutralization Unit, on the Northside of Naval Support Activity (NSA) Memphis, Millington, Tennessee. Figures 1-1 and 1-2 provide a vicinity map and aerial photograph of SWMU 26, respectively.

As a result of the Base Closure and Realignment Act of 1990 (BRAC), a portion of NSA Memphis, which includes SWMU 26, will be closed and prepared for transfer to the City of Millington. Eight SWMU assemblies (i.e., groups) have been defined for the NSA Memphis Resource Conservation and Recovery Act (RCRA) Corrective Action Program. Four of these assemblies (A, B, C, and D) are on closing portions of the base and have been categorized and ranked according to their BRAC status. SWMU 26 is in Assembly C, which is composed of five SWMUs requiring CSIs to confirm whether a release of contaminants has occurred and, if so, whether RCRA Facility Investigation (RFI) characterization will be required. The remaining four assemblies (E, F, G, and H) are on portions of the base that will remain open. The investigation, undertaken by EnSafe/Allen & Hoshall (E/A&H), adhered to the requirements of the Hazardous and Solid Waste Amendments portion (HSWA-TN002) of RCRA Permit No. TN2-170-022-600 and applicable regulations.

The Assembly C Site Investigation Plans (E/A&H, 1995) proposed two phases of investigation for the SWMU 26 CSI. The first phase consisted of a subsurface soil investigation using truck-mounted Geoprobe equipment to collect the samples. Based on the results of the first phase, a second phase, consisting of installing soil borings and monitoring wells, is not required. In addition, one surface-soil sample was collected and analyzed, and the results were used to prepare a Preliminary Risk Evaluation (PRE). The PRE indicates the property is suitable for lease for either residential or commercial land use.

This CSI report summarizes the activities conducted during the investigation's first phase and provides conclusions, including a recommendation for no further action.





## **SWMU 26 BOUNDARY**





### **Photograph Scale**

50

100 Ft.





# RCRA FACILITY INVESTIGATION NSA MEMPHIS MILLINGTON, TENNESSEE

FIGURE 1-2
DIGITAL ORTHOPHOTOGRAPH
N-102 BATTERY ACID NEUTRALIZATION UNIT
SWMU 26

AML horsel/sel/steve/slin\_di

Revision 2: September 25, 1996

#### 2.0 SITE DESCRIPTION AND HISTORICAL INFORMATION

#### 2.1 Site Description

SWMU 26 is the site of an inactive, subsurface acid neutralization unit that was installed in 1980 and used in conjunction with the Building N-102 Battery Shop, adjacent and immediately southwest of the SWMU. Building N-102 is on the southeast corner of Funafuti Street and Fifth Avenue on the Northside of NSA Memphis. Figure 2-1 provides a site map of SWMU 26.

The neutralization unit is in a grassy area between Building N-102 and a sidewalk which runs along the length of the building. The area between Building N-102 and the adjacent Building N-122 to the east is elevated and paved, with a retaining wall facing Funafuti Street to the north. The street is approximately 3 feet below the paved area. The neutralization unit, covered by a 6-inch thick concrete pad and a 3-foot diameter manhole on the surface, is constructed of two 3-foot long by 3-foot diameter reinforced concrete pipes set in a 6-inch thick concrete base pad. The site drains to the southwest into the SWMU 4 storm sewer and drainage ditch, which is approximately 1,000 feet south of SWMU 26 at its closest point. Water in SWMU 4 eventually empties into the North Fork Creek.

#### 2.2 Historical Site Operations

The N-102 Battery Acid Neutralization Unit received drainage from a pair of lead sinks along the inside wall of the northeast corner of Building N-102. It was designed to neutralize drained battery acid and flush water prior to discharge into the sanitary sewer system. During its operation, the unit was pumped, and its crushed limestone (sodium carbonate) was replenished every six months to maintain the system's effectiveness. Figure 2-2 provides a construction schematic of the neutralization unit. The neutralization unit was bypassed in 1992, when the Naval Environmental Inspection Team indicated that it might qualify as a potential hazardous waste site.





SECTION SCALE: NOT TO SCALE



RCRA FACILITY INVESTIGATION NSA MEMPHIS MILLINGTON, TN

FIGURE 2-2 CONSTRUCTION DETAILS BUILDING N-102 BATTERY ACID NEUTRALIZATION UNIT SWMU 26

DWG DATE: 05/22/96 DWG NAME: 94CD26

#### 3.0 PRELIMINARY INVESTIGATIONS

No adverse conditions were identified in a Visual Site Inspection of the unit conducted in 1990 (ERC/EDGe, 1990). The neutralization unit was bypassed in 1992 when the Naval Environmental Inspection Team indicated that it might qualify as a potential hazardous waste site. A sample collected from its contents (liquid/solid) on June 29, 1992, was analyzed for Toxicity Characteristic Leaching Procedure metals, base-neutral/acid extractable organic compounds, and volatile organic compounds. Results of the analyses indicate constituent concentrations within the tank were below regulatory levels for disposal as a hazardous waste. Appendix A contains a copy of the analytical report.

#### 4.0 FIELD INVESTIGATIONS AND METHODOLOGY

The CSI soil and groundwater sampling program was intended to confirm the absence or presence of contaminants associated with past activities at SWMU 26. Specifically, the CSI objectives were:

- Determine the status and impact of the acid neutralization unit.
- Determine the potential for subsurface soil contamination in the loess.
- Determine the potential for groundwater contamination in the loess.
- Determine the suitability of the property for leasing by preparing a PRE.

This section summarizes the soil sampling tasks during the first phase of the CSI, which was conducted using a hand auger to collect a surface soil sample and Geoprobe equipment for subsurface soil sampling. The field sampling activities followed the procedures outlined in the U.S. Environmental Protection Agency (USEPA)- and Tennessee Department of Environment and Conservation-approved *Comprehensive RFI Work Plan* (E/A&H, 1994) and *Assembly C Site Investigation Plans* (E/A&H, 1995). Sample location descriptions and the rationale for sampled intervals are presented in Sections 4.1 and 4.2, respectively, of this CSI report. Section 4.3 presents the specific sampling protocols (sample processing, labeling, and chain-of-custody documentation).

#### **Analytical Parameters**

One surface soil sample was collected and analyzed to prepare a PRE to determine the suitability of the property for leasing. This sample was shipped to the National Environmental Testing, Inc. (NET) laboratory in Bedford, Massachusetts, and analyzed for semivolatile organic compounds (SVOCs) by USEPA Method 8270, chlorinated pesticides/polychlorinated biphenyls (PCBs) by USEPA Method 8080, and Appendix IX Metals by USEPA Method 6010/7000 series using a Level IV-equivalent Data Quality Objective (DQO).

Confirmatory Sampling Investigation Report

Assembly C — SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

Twelve subsurface soil samples were collected in the Geoprobe investigation to determine the

nature and extent of contamination by specific metals associated with battery acid neutralization

at SWMU 26. Each sample was shipped to NET for the analyses of arsenic, cadmium, lead,

mercury, nickel, and zinc by USEPA Method 6010/7000 series using a Level III-equivalent

DQO for 95% of the samples and a Level IV-equivalent DQO for the remaining 5% of the

samples.

E/A&H validated the analytical results of the surface soil sample. Validata Chemical Services,

Inc., of Norcross, Georgia, validated the analytical results of the subsurface samples.

Attachment 1 contains the validation report, which indicates the overall data quality of the

analytical work is satisfactory.

**Hand-Auger Sampling Methods** 

E/A&H collected a surface soil sample at SWMU 26 using a 3-inch diameter, stainless-steel

hand auger. The hand auger was advanced from land surface to a depth of 1 foot below

land surface (bls) using a clockwise motion. The soil collected in the auger was placed in a

stainless-steel bowl for processing.

**Geoprobe Sampling Methods** 

E/A&H conducted a Geoprobe investigation at SWMU 26 to obtain subsurface soil samples for

metals analyses. Tri-State Testing Services, Inc., of Memphis, Tennessee, collected the

subsurface soil samples using a truck-mounted hydraulically-driven, Geoprobe soil sampling

system. Samples were obtained by advancing a 1-inch diameter soil probe to the desired

sampling depth. The 48-inch sampler, situated at the end of the probe, contained a "push point"

which retracted when the desired sampling interval was reached. The sampler was

then advanced through the sampling interval. The soil sample was then retrieved from the

borehole and the collected material removed from the sampler. The samples were collected in

4-2

Confirmatory Sampling Investigation Report Assembly C — SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

a stainless-steel sampler lined with an acetate sleeve, which minimized sample handling and

maintained sample integrity.

4.1 Investigation of Surface and Subsurface Soil

**Surface Soil Investigation** 

One surface soil sample was proposed in Revision 0 of the Assembly C Confirmatory Sampling

Investigation Report (E/A&H, November 1995). The sample was collected immediately adjacent

and south of the former neutralization unit. Figure 4-1 shows the surface soil sample location.

**Subsurface Soil Investigation** 

Four subsurface sampling locations were proposed in the Assembly C Site Investigation Plans

(E/A&H, 1995) to define the nature and extent of contamination, if any, associated with

the N-102 Acid Neutralization Unit. Three of the locations border the former neutralization

tank, and the fourth is along Funafuti Street, in a presumed upgradient location. Figure 4-1

shows the subsurface soil sampling locations.

4.2 Sampling Rationale and Methods

**Surface Soil** 

Revision 0 of the Assembly C Confirmatory Sampling Investigation Report stated that one surface

soil sample would be collected from 0- to 1-foot bls (surface interval) immediately adjacent to

the neutralization unit. The sample was collected with a decontaminated stainless-steel hand

auger and immediately placed in a stainless-steel bowl and homogenized using a stainless-steel

spoon in accordance with Section 4.2.10 of the Region IV USEPA Standard Operating

Procedures/Quality Assurance Manual and containerized as outlined in Section 4.4.4 of the

Comprehensive RFI Work Plan. After containerization, all samples were immediately placed on

ice for transport to the offsite laboratory.

4-3



Confirmatory Sampling Investigation Report Assembly C — SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

#### **Subsurface Soil**

The Assembly C Site Investigation Plans stated that the following samples would be collected from each Geoprobe location during the CSI:

- One subsurface soil sample from the 3- to 4-foot interval just below the unit's piping,
- One subsurface soil sample from the 6- to 7-foot interval, just below the base of the unit,
- One soil or groundwater sample from the soil/water interface in the loess

To determine the actual intervals to be sampled, the first Geoprobe boring (Location 1) was sampled continuously to 18 feet bls, where a sandy clay interval was encountered (soil/water interface); however, no groundwater samples could be collected from the loess. Based on field observations, the following intervals were selected for CSI sampling:

- One subsurface soil sample from the 3- to 4-foot interval just below the unit's piping,
- One subsurface soil sample from the 4- to 8-foot interval to provide information surrounding and beneath the unit, and
- One subsurface soil sample from the 16- to 18-foot interval, corresponding to the soil/water interface in the loess.

An exception to the above sampling strategy occurred at Location 4, where the deepest soil sampling interval was 13 to 15 feet due to a subsurface obstruction. An E/A&H geologist logged and processed the soil samples for submittal to the analytical laboratory. Tri-State collected the soil samples with the Geoprobe rig using the 1-inch diameter soil probe lined with an acetate sleeve. Each sample was placed in a stainless-steel bowl and homogenized using a stainless-steel spoon in accordance with Section 4.2.10 of the Region IV USEPA Standard Operating Procedures/Quality Assurance Manual and containerized as outlined in Section 4.4.4

Confirmatory Sampling Investigation Report

Assembly C — SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

of the Comprehensive RFI Work Plan. After containerization, all samples were immediately

placed on ice for transport to the offsite laboratory.

The sampling protocol for surface and subsurface soil adhered to the approved Comprehensive

RFI Work Plan and the Assembly C Site Investigation Plans. Sample handling was minimized.

When transferring material from the sampling device to containers, the operation was conducted

expediently, in as clean an environment as possible. A new pair of disposable gloves was

donned before collecting each subsurface soil sample. Empty containers were kept packaged

until used, at which time they were immediately chilled and isolated in coolers.

4.3 Sample Processing and Chain-of-Custody Procedure

All samples collected in the field were labeled with a 10-digit alphanumeric code identifying the

site, sample type, sample location, and interval. The first three digits identify the site location,

and the fourth digit identifies the sample matrix. The next four digits identify the sampling

location, and the last two digits are the deepest point of the sampling interval. For example, the

sample label "026S000318" designates a SWMU 26 soil sample collected from Location 3 at a

maximum depth of 18 feet.

Clean sample containers provided by the testing laboratory were shipped to E/A&H in sealed

packages. Sample containers were labeled with the sample identification number, date,

sampler's name, and requested analytical parameter, then placed in a cooler immediately

following collection. Each sample was logged in the field logbook. Samples for offsite

laboratory analysis were prepared for shipment by wrapping each container individually in

bubble wrap, placing it in a resealable plastic bag, and packing it on ice inside a sturdy cooler.

Cooler lids were secured with packing tape and sealed with signed custody seals. Packaged

samples were then shipped overnight via FedEx priority service for next morning delivery. The

offsite laboratory was notified the day of shipment of the number of samples submitted. All

4-8

Confirmatory Sampling Investigation Report Assembly C — SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

sample shipments were reported to have arrived at NET in good condition and at the appropriate

temperature.

To ensure the integrity of the sample transfer process, a strict chain-of-custody procedure was

implemented. This procedure was initiated in the field for each sampling event and conducted

through custody transfer to the analytical laboratory. A chain-of-custody form was completed

for each batch of samples, itemizing sample numbers, containerization, preservatives, analyses

requested, date and time of sampling, and FedEx shipping number. Custody transfers were

recorded by signature, date, and time of relinquishment, and receipt of custody by the parties

involved.

4.4 Grouting Procedures

Tri-State filled each Geoprobe boring with neat cement grout following sample collection.

4.5 Decontamination Procedures

Tri-State decontaminated its downhole field equipment which did not come in contact with the

samples (i.e., rods, split-spoons) with a nonphosphate detergent and a deionized, organic-free

water rinse. All downhole equipment and sampling tools which could potentially contact the

collected samples were decontaminated before and after each use in accordance with guidelines

set forth in the Assembly C Site Investigation Plans, which consisted of the following steps:

• Wash with a hot soap and water mixture

• Rinse with potable water

Rinse with deionized organic-free water

Rinse twice with pesticide-grade isopropyl alcohol

Rinse with deionized organic-free water

Wrap with aluminum foil or plastic

4-9

Confirmatory Sampling Investigation Report Assembly  $C-SWMU\ 26,\ N-102$  Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee Revision 2: September 25, 1996

A new pair of disposable nitrile gloves was donned before handling decontaminated sampling equipment. Because subsurface soil samples were collected directly from the acetate sleeves within the stainless-steel sampler, and the surface soil sample was collected directly from the hand auger, the CSI generated no investigation-derived waste.

#### 5.0 GEOLOGY AND HYDROGEOLOGY

#### 5.1 Regional Geology and Hydrogeology

The general hydrogeology of the Memphis area is discussed in detail in Section 2.11 and a conceptual model of the hydrogeology at the NSA is presented in Section 2.12 of the Comprehensive RFI Work Plan (E/A&H, 1994). Updated information is available in the Hydrogeology of Post-Wilcox Group Stratigraphic Units in the Area of the Naval Air Station Memphis, Near Millington, Tennessee (Kingsbury and Carmichael, 1995), provided in Attachment 2 of this document. On the basis of this updated information, the hydrogeology of NSA Memphis is re-summarized below.

The two stratigraphic units investigated during the RFIs at NSA Memphis are the loess/alluvial deposits of Pleistocene and Holocene age and the underlying fluvial deposits of Pleistocene to Pliocene age. The loess — eolian deposits consisting of silt, silty clay, clay, and minor amounts of sand — is the principal unit occurring at land surface throughout the NSA Memphis Northside. Alluvium, which is restricted to stream valleys, includes alluviated or reworked loess. The loess is typically 0 to 65 feet thick in the Memphis area; at NSA Memphis it ranges from 15 to 45 feet thick (USGS, 1995). Water-bearing zones are present in the loess primarily in the upper part of this unit; however, yields are low and water quality analyses performed during the water use survey portion of previous underground storage tank investigations indicate that loess groundwater does not meet many primary and secondary drinking water standards. Previous investigations at NSA Memphis have found depth to water in the loess varying between 5 and 15 feet bls and vertical hydraulic conductivities to range from 10-6 to 10-8 centimeter per second (cm/sec). Although the loess may be considered an aquitard on the basis of the relatively low hydraulic conductivities, this shallowest water-bearing zone is present within this interval. Groundwater flow in the loess is primarily downward, although locally some groundwater in the loess may discharge to nearby streams, drainage ditches, and other surface water bodies.

Confirmatory Sampling Investigation Report

Assembly C - SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

The fluvial deposits underlie the loess in upland areas and consist of sand, gravel, and some clay, with thin layers of ferruginous sandstone and conglomerate at the base. This unit ranges in thickness from 0 to 100 feet in the Memphis area; on the Northside of NSA Memphis it ranges from 10 to 60 feet thick and represents the most significant component of the surficial aquifer. Many shallow domestic wells in the Memphis rural areas are completed in the fluvial deposits. Relative groundwater elevations between wells completed in the loess/alluvium and fluvial deposits indicate semiconfined to confined conditions in the fluvial deposits. Typically a downward vertical gradient exists between water in the loess and the fluvial deposits. Sediments in the fluvial deposits generally coarsen with depth, and typically, the upper portion consists of a mixture of very fine sand with varying degrees of silt and clay and becomes increasingly less silty with depth, grading into a fine to medium sand near the middle of the unit. Grain sizes typically coarsen below this interval, grading into a gravelly sand near the fluvial deposits basal section.

The fluvial deposits are underlain by the Cockfield Formation, a part of the Jackson-upper Claiborne confining unit, which is a heterogeneous formation consisting of very fine silty sand interbedded with clay and silt lenses or clay with interbedded fine sand lenses. The Cockfield Formation ranges in thickness from approximately 35 to 180 feet in the NSA Memphis area. The more-permeable characteristics of the fluvial deposits, compared to the relatively impermeable properties of the overlying loess/alluvium and the underlying Jackson-upper Claiborne confining unit, result in the fluvial deposits being the preferential zone of groundwater flow and the route for contaminant transport in NSA Memphis's subsurface.

#### 5.2 Site-Specific Geology and Hydrogeology

The following sections provide site-specific geologic and hydrogeologic information obtained from stratigraphic test borings, the Assembly A RFI investigation, and the SWMU 26 Geoprobe investigation.

5-2

#### **Stratigraphic Test Borings**

In 1994, the U.S. Geological Survey (USGS) drilled and sampled stratigraphic test hole 5, approximately 175 feet north-northeast of SWMU 26. Figure 1-1 shows the location of test hole 5. Attachment 2 of this document contains a copy of the previously referenced Kingsbury and Carmichael publication, which provides a geologic cross-section showing test hole 5 (USGS designation Sh:V-76). Stratigraphic test hole 5 was drilled 32 feet into the Cook Mountain Formation to better understand the site geology before monitoring well installations. Cuttings from the test hole were visually logged by a field geologist during drilling, and the test hole was geophysically logged to its total depth following completion. Stratigraphy and lithologies encountered in the test hole are as follows:

Loess: Approximately 30 feet of windblown silt and clay deposits.

Fluvial Deposits: Approximately 54 feet of sand and gravel.

Cockfield Formation: Approximately 104 feet of alternating sand and clay with

some lignite.

Cook Mountain Formation: Characterized as a light olive-gray to greenish-gray dense

clay. Defined as the upper confining unit between the surficial aquifers and the Memphis Aquifer. Because the stratigraphic test hole was only advanced 32 feet into the Cook Mountain Formation, the entire thickness is not

known.

#### **Previous Investigations**

Subsurface soil information was collected during the Assembly A RFI for SWMU 7, the Building N-126 Plating Shop Dry Well. SWMU 7 is approximately 900 feet west of SWMU 26. During the Assembly A investigation, nine monitoring-well clusters (designated 07MW01 through 07MW09) were installed at various locations around SWMU 7. Monitoring well clusters 07MW02, 07MW03, and 07MW06 are the closest to SWMU 26 (between 650 and 800 feet west and northwest). The general lithology encountered in the soil borings associated with these three clusters is as follows:

- Clayey silt, silty clay, and sandy clay from ground surface to between 25 and 34 feet bls (loess).
- Sand with gravel and silty clayey sand from between 25 and 34 feet bls to between 77 and 82 feet bls (fluvial deposits).
- Silty clayey sand, silty sand with clay lenses, clay with sand lenses, and lignite from between 77 and 82 feet to the termination depth of the boring (between 101 and 125 feet [Cockfield Formation]).

Laboratory-measured vertical hydraulic conductivities for the subsurface soil samples associated with the SWMU 7 monitoring wells are as follows:

| Well<br>Cluster | Associated Soil Sample ID | Sampling Depth<br>(in feet)                                            | Conductivity (in cm/sec)                      |
|-----------------|---------------------------|------------------------------------------------------------------------|-----------------------------------------------|
| 07MW01          | 07S000177<br>07S0001112   | 75' to 77' (lower fluvial deposits) 110' to 112' (Cockfield Formation) | 6.8 x 10 <sup>-5</sup> 4.1 x 10 <sup>-8</sup> |
| 07MW03          | 07S0003117                | 115' to 117' (Cockfield Formation)                                     | 1.6 x 10-8                                    |
| 07MW08          | 07S0008127                | 125' to 127' (Cockfield Formation)                                     | 8.7 x 10 <sup>-7</sup>                        |
| 07MW09          | 07S000922                 | 10' to 22' (loess)                                                     | 9.5 x 10 <sup>-7</sup>                        |

Monitoring well cluster 07MW01 is approximately 750 feet west-northwest of SWMU 26. Monitoring-well clusters 07MW03, 07MW08, and 07MW09 are 600 feet west-northwest, 1,100 feet west, and 1,050 feet west-northwest of SWMU 26, respectively. The boring logs and hydraulic conductivity data sheets for SWMU 7 are provided in Attachment 2.

Revision 2: September 25, 1996

Based on the topography, the information contained in the conceptual model of the NSA Memphis hydrogeology (Section 2.12 of the *Comprehensive RFI Work Plan*), recent data collected during investigations at Assembly A SWMUs, and communication with USGS representatives, groundwater in the fluvial deposits flows locally toward the north-northeast. Groundwater flow in the loess is primarily downward, although locally, some groundwater in the loess may discharge to nearby streams, drainage ditches, and other surface water bodies.

#### SWMU 26 CSI

The deepest Geoprobe soil boring at SWMU 26 terminated at 18 feet bls. The E/A&H geologist described the lithology encountered during the Geoprobe investigation as a brown clayey silt (loess). The water-bearing zone in the loess (18 feet bls) was visually classified as a sandy clay.

This page intentionally left blank.

Confirmatory Sampling Investigation Report Assembly C — SWMU 26, N-102 Battery Acid Neutralization Unit

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

### 6.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the analytical results for surface soil (0' to 1' bls) and subsurface soil (> 1' bls) samples collected during the CSI. One surface soil sample was collected and analyzed for SVOCs, pesticides/PCBs, and Appendix IX metals. Twelve subsurface soil samples (three intervals at four sampling locations) were collected and analyzed for the following six metals: arsenic, cadmium, lead, mercury, nickel, and zinc.

Detected concentrations of organic compounds and metals have been compared with media-specific guidance concentrations from the USEPA Region III Risk-Based Concentration (RBC) Table (July to December 1995) to evaluate the risk associated with exposure to soil contaminants and to evaluate the transfer potential of contaminants from soil to groundwater. In addition, inorganic concentrations for the soil samples are compared with established reference concentrations (RCs) derived from background samples at NSA Memphis to determine if they represent naturally occurring concentrations. Background RC calculations were provided in the Technical Memorandum — Assemblies A through D Background Reference Concentrations, E/A&H, September 18, 1996).

Specifically, surface soil sample results are compared with RCs, residential and industrial RBCs, and soil screening levels (SSLs); whereas subsurface soil sample results are compared with RCs and SSLs only.

Section 6.1 briefly discusses the criteria used to determine the RCs (two times the mean background concentration) for inorganics. Section 6.2 summarizes the detected contaminants in soil compared with the respective RBC and/or SSL values. Section 6.3 summarizes the contaminants detected at SWMU 26. Contaminants identified in surface soil are further evaluated in the Preliminary Risk Evaluation (Section 7).

6-1

Revision 2: September 25, 1996

6.1 Background and Reference Criteria

Background locations were established at five areas at NSA Memphis (shown on Figure 6-1) to

determine ambient soil and groundwater quality conditions. Background data for soil consist of

12 samples collected from five boring locations. The background RC for each inorganic was

calculated by doubling the mean concentration detected. Two RCs were established for soil —

one for surface soil (0 to 1 foot bls) for use in preliminary risk evaluation and one for subsurface

soil (>1 foot bls) to evaluate the excess risk associated with exposure to the detected element

in soil and to determine if it occurs naturally. Tables 6-1 and 6-2 show the RCs for surface soil

and subsurface soil, respectively.

6.2 Soil Sample Analytical Results

The following sections summarize the results of soil samples collected during the CSI.

Appendix B contains the analytical data.

6.2.1 Surface Soil

One surface soil sample was collected and analyzed for pesticides/PCBs, SVOCs, and

Appendix IX metals. Figure 4-1 shows the surface soil sample location.

Pesticides/PCBs

No pesticides or PCBs were detected in the surface soil sample.

**SVOCs** 

Eleven SVOCs were detected in the surface soil sample (refer to Table 6-1); however none of

the SVOCs exceeded the applicable SSLs. Only one SVOC, benzo(a)pyrene at 0.099 milligrams

per kilogram (mg/kg), exceeded the residential RBC (0.088 mg/kg), but did not exceed the

industrial RBC (0.78 mg/kg).

6-2



This page intentionally left blank.

Table 6-1
Detected Concentrations of Metals, Pesticides, and SVOCs in Surface Soil
SWMU 26 — Building N-102 Battery Acid Neutralization Unit
(data in milligrams per kilogram)

### Sample Location/ID

| Analyte                    | 5 (0 - 1')<br>026S000501 | RC•<br>0 - 1' | SSL*         | RBC <sup>c</sup><br>Residential | RBC <sup>c</sup><br>Industrial |
|----------------------------|--------------------------|---------------|--------------|---------------------------------|--------------------------------|
|                            |                          | Metals        |              |                                 |                                |
| Antimony                   | ND4                      | ND            |              | 31                              | 820                            |
| Arsenic                    | 5.7                      | 13.2          | 15           | 0.43                            | 3.8                            |
| Barium                     | 82.8                     | 191           | 32           | 5,500                           | 140,000                        |
| Beryllium                  | 0.53 Je                  | 0.96          | 180          | 0.15                            | 1.3                            |
| Cadmium                    | ND                       | ND            | 6            | 39                              | 1,000                          |
| Chromium                   | 15.2 J                   | 26.4          | 19           | 390                             | 10,000                         |
| Cobalt                     | 8,5 J                    | 20,6          | _            | 4,700                           | 120,000                        |
| Copper                     | ND                       | 27            | <del>-</del> | 3,100                           | 82,000                         |
| Lead                       | 19.5                     | 28.7          | Nonef        | None                            | None                           |
| Мегсигу                    | ND                       | 2.3           | 3            | 23                              | 610                            |
| Nickel                     | 21.8                     | ND            | 21           | 1,600                           | 41,000                         |
| Selenium                   | ND                       | ND            | 3            | 390                             | 10,000                         |
| Silver                     | 1.6 J                    | ND            |              | 390                             | 10,000                         |
| Vanadium                   | 25                       | 49.6          | <del>-</del> | 550                             | 14,000                         |
| Zinc                       | 65.1                     | 88.3          | 42,000       | 23,000                          | 610,000                        |
| Tin                        | ND                       | ND            |              | 47,000                          | 1,000,000                      |
|                            | -                        | Organic Com   | pounds       |                                 |                                |
| Phenanthrene               | 0.12 J                   | _             | 1,400*       | 2,300#                          | 61,000*                        |
| Fluoranthene               | 0.22 J                   | <del></del>   | 980          | 3,100                           | 82,000                         |
| Pyrene                     | 0.19 J                   |               | 1,400        | 2,300                           | 61,000                         |
| Benzo(a)anthracene         | 0.11 J                   |               | 0.7          | 0.88                            | 7.8                            |
| Chrysene                   | 0.11 J                   |               | 1            | 88                              | 780                            |
| bis(2-Ethylhexyl)phthalate | 0.061 J                  |               | 11           | 46                              | 410                            |
| Benzo(b)fluoranthene       | 0.11 J                   | —             | 4            | 0.88                            | 7.8                            |

# Table 6-1 Detected Concentrations of Metals, Pesticides, and SVOCs in Surface Soil SWMU 26 — Building N-102 Battery Acid Neutralization Unit (data in milligrams per kilogram)

### Sample Location/ID

|                  | Analyte               | •                                                                                                             | 5 (0 - 1')<br>026S000501                                                                                                                                                                                                                  | RC*<br>0 - 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SSL                                                                                                                              | RBC <sup>c</sup><br>Residential                                                                                                                                     | RBC <sup>c</sup><br>Industrial                                                                                                            |
|------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                       |                                                                                                               |                                                                                                                                                                                                                                           | Organic Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pounds                                                                                                                           |                                                                                                                                                                     |                                                                                                                                           |
| Benzo(l          | k)fluorant            | hene                                                                                                          | 0.089 J                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                | 8.8                                                                                                                                                                 | 78                                                                                                                                        |
| Benzo(a          | a)pyrene              |                                                                                                               | 0.099 J                                                                                                                                                                                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                | 0.088                                                                                                                                                               | 0.78                                                                                                                                      |
| Indeno(          | 1,2,3-cd)             | pyrene                                                                                                        | 0.048 J                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                                                                                               | 0.88                                                                                                                                                                | 7.8                                                                                                                                       |
| Benzo(g          | g,h,i)pery            | lene                                                                                                          | 0.051 J                                                                                                                                                                                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,400s                                                                                                                           | 2,300=                                                                                                                                                              | 61,000*                                                                                                                                   |
| SSL<br>RBC<br>ND | =<br>=<br>=<br>=<br>= | to 1-foot a<br>five backg<br>Memorand<br>Soil Screen<br>Risk-based<br>denotes an<br>denotes co<br>Although to | concentration (2 x the m<br>nd the greater than 1-foc<br>round soil boring location.<br>It me Assemblies A through the concentrations obtained<br>alyte was not detected.<br>Incentration is estimated.<br>It concentration is estimated. | ot intervals below lar<br>ons at various locations at various locations of the USEPA Region of the USEPA Region of the USEPA Relations of th | nd surface using analitions on the Northside Reference Concentration III Risk-Based Concegion III Risk-Based USEPA has published | ytical data from 12 soil<br>le and Southside of NS.<br>ations, E/A&H, Septem<br>incentration Table, July<br>de Concentration Table, July<br>de a recommended soil s | samples collected fr<br>A Memphis ( <i>Techni</i><br>ber 18, 1996).<br>- December, 1995.<br>uly - December, 1995.<br>ccreening concentrat |
|                  |                       | of 400 mil                                                                                                    | ligrams per kilogram (m                                                                                                                                                                                                                   | g/kg) for residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lland use and 1 000                                                                                                              | mg/kg for industrial la                                                                                                                                             | nd use (Office of Sc                                                                                                                      |

No RBCs exist for phenanthrene and benzo(g,h,i)perylene; the RBCs for pyrene were used as surrogates.

Bold indicates analyte exceeds the RC.

Italics indicates analyte exceeds the soil screening level.

Bold and Italics indicates analyte exceeds both the RC and the SSL.

LARGE PRINT indicates analyte exceeds the residential RBC.

111.8

42,000

Table 6-2
Detected Concentrations of Metals in Subsurface Soil
SWMU 26 — Building N-102 Battery Acid Neutralization Unit
(data in milligrams per kilogram)

Sample Location/ID 1 (3' - 4') 1 (4' - 8') 1 (16' - 18') 2 (3' - 4') 2 (4' - 8') 2 (16' - 18') Analyte 026S000104 026S000108 026S000118 026S000204 026S000208 026S000218 RC<sup>a</sup> (2 x Mean Background) SSL Arsenic NDe 5.1 Ja ND 9.0 J 3.8 J ND 15 20.4 Cadmium ND ND ND ND 1.0 J ND 6.8 6 Lead 6.3 7.6 5.0 7.8 6.1 5.8 25.1 None\* Nickel 11.8J 15.9 J 13.5 J 18.8 J 16.8 J 14.5 J 59.8 21 Zinc 29.2 32.3 17.7 42.0 31.6 15.1 111.8 42,000 3 (3' - 4') 3 (4' - 8') 3 (16' - 18') 4 (3' - 4') 4 (13' - 15') 4 (4' - 8') Analyte 026S000304 026S000308 026S000318 026S000404 026S000408 026S000415 RC<sup>a</sup> (2 x Mean Background) SSL Arsenic 6.6 J ND ND 3.9 J 7.3 J ND 20.4 15 Cadmium 0.97 J 0.96 J 0.77 J 0.78 J 1.2 J ND 6.8 6 Lead 5.9 7,4 7.01 ND 5.2 6.5 25.1 None• Nickel 18.5 J 15.8 J 11.1 J 19.9 J 16.4 J 11.4 J 59.8 21

#### Notes:

Zinc

RC = Reference concentration (2 x the mean background concentration). Background concentrations were established for the 0 to 1-foot and the greater than 1-foot intervals below land surface using analytical data from 12 soil samples collected from five background soil boring locations at various locations on the Northside and Southside of NSA Memphis (Technical Memorandum — Assemblies A through D Background Reference Concentrations, E/A&H, September 18, 1996).

23.8

21.0

b SSL = Soil Screening Level; obtained from the USEPA Region III Risk-Based Concentrations Table, July to December 1995.

30.1

18.0

c ND = Compound not detected.

34.7

29.0

- d J = Estimated concentration.
- Although there is no published SSL for lead, USEPA has published a recommended soil screening concentration of 400 milligrams per kilogram (mg/kg) for residential land use and 1,000 mg/kg for industrial land use (Office of Solid Waste and Emergency Response Directive 9355.4-12).

Revision 2: September 25, 1996

**Appendix IX Metals** 

Ten Appendix IX metals were detected in the surface soil sample (refer to Table 6-1). The

residential and industrial RBCs, 0.43 mg/kg and 3.8 mg/kg, respectively, were exceeded for

arsenic (5.7 mg/kg), and the residential RBC (0.15 mg/kg) was exceeded for beryllium

(0.53 mg/kg); however, these metals occur naturally at NSA Memphis and were detected at

concentrations below their RCs (13.2 mg/kg and 0.96 mg/kg, respectively). The only metal that

exceeded its surface soil RC and SSL was nickel (21.8 mg/kg; RC = not detected, SSL =

21 mg/kg); however, this metal did not exceed its residential RBC (1,600 mg/kg). Silver,

detected at 1.6 mg/kg, also exceeded its RC (not detected); however, it did not exceed its

residential RBC (390 mg/kg) and no SSL exists for comparison.

6.2.2 Subsurface Soil

Twelve subsurface soil samples were collected during the CSI. Three intervals were sampled

at each of the four subsurface soil sampling locations shown on Figure 4-1. The samples were

analyzed for the metals arsenic, cadmium, lead, mercury, nickel, and zinc. Table 6-2

summarizes the analytical results for the subsurface soil samples.

**Metals** 

Five metals were detected in the subsurface soil samples: arsenic, cadmium, lead, nickel, and

zinc. No mercury was detected in any sample. No detected metal exceeded either the RC for

subsurface soil or the SSL.

6.3 Summary of Nature and Extent

Soil analytical results indicate minimal contamination at SWMU 26. As shown on Table 6-1,

low concentrations of SVOCs were detected in the surface soil sample collected immediately

south of the neutralization unit, possibly originating from storm water runoff from the adjacent

asphalt parking lot. Only one SVOC, benzo(a)pyrene (0.099 mg/kg) exceeded its residential

RBC (0.088 mg/kg); however, it did not exceed either its industrial RBC or its applicable SSL.

6-8

As shown on Figure 6-2, no contaminant detected in surface or subsurface soil exceeded its RC and residential RBC.

### Contaminant Transfer from Soil to Groundwater

Tables 6-1 and 6-2 provide SSL values for transfer from surface and subsurface soil to groundwater, and Figure 6-3 illustrates the sample location where one or more contaminants exceeded both the RC and SSL. Figure 6-3 shows the only metal which exceeded the RC and SSL was nickel in the surface soil sample collected at location 5 (detected concentration = 21.8 mg/kg; RC = not detected, SSL = 21 mg/kg). It should be noted that nickel's RC for subsurface soil is 59.8 mg/kg.

This page intentionally left blank.





### 7.0 PRELIMINARY RISK EVALUATION

In accordance with Guidance on Preliminary Risk Evaluations for the Purpose of Reaching a Finding of Suitability to Lease (USEPA Region IV Memorandum, November 1994), a PRE was conducted for SWMU 26 to finalize its RCRA closure. One surface soil sample was collected from an unpaved area immediately adjacent to the south side of the neutralization unit (refer to Figure 4-1). The sample was shipped to an offsite laboratory (NET of Bedford, Massachusetts) under chain-of-custody documentation for the following analyses:

Analysis Method

Semivolatile Organic Compounds USEPA Method 8270

Chlorinated Pesticides/Polychlorinated Biphenyls USEPA Method 8080

40 CFR 264 Appendix IX Metals USEPA Method 6010/7000 Series

A PRE is conducted by constructing a table for carcinogenic and systemic (noncarcinogenic) compounds. The maximum concentration for each detected chemical and its corresponding RBC concentration are entered into the table to calculate cumulative human health risk. Soil data used in the calculations are exclusively from samples collected across the surface soil interval (0 to 1 foot bls).

Proportionate risk is calculated for each detected site chemical by comparing its maximum reported concentration with the corresponding RBC value. Risk and hazard for residential and commercial scenarios were calculated separately. RBC values were calculated by USEPA based on a risk threshold of 10-6 for carcinogens or a hazard quotient threshold of 1.0 for noncarcinogens. Therefore, a risk ratio is calculated for each contaminant by one of the following two equations:

Revision 2: September 25, 1996

Carcinogenic Risk Ratio:  $RR = \underline{media\ concentration} \times TR$ 

screening value

Noncarcinogenic Risk Ratio:  $RR = \underline{media\ concentration} \times THQ$ 

screening value

where:

RR = the risk ratio

Media Concentration = the maximum concentration of a site chemical

Screening Value = the RBC value for that particular chemical

TR = target risk used by USEPA to calculate RBCs for

carcinogens (10-6)

THQ = target hazard quotient used by USEPA to

calculate RBCs for noncarcinogens (1.0)

Tables 7-1 and 7-2 summarize PRE results for SWMU 26 for carcinogens and noncarcinogens, respectively. The risk ratios for each chemical are summed separately for both residential and commercial scenarios to determine the overall site risk. Cumulative risk (for carcinogens) and cumulative hazard index (HI) (for noncarcinogens) are calculated separately, and the cumulative risk and HI are each compared to the corresponding cumulative threshold in accordance with the November 1994 USEPA Region IV Memorandum.

If the carcinogenic Incremental Lifetime Excess Cancer Risk (ILCR) is greater than 10<sup>-4</sup> (the cumulative risk threshold) or the noncarcinogenic HI is greater than 1 (the cumulative HI threshold), the site may require additional investigation for the corresponding land use scenario (USEPA Region IV Memorandum, November 1994). If neither threshold is exceeded, the property is considered suitable to lease for the specified land use scenario.

Table 7-1
Preliminary Risk Evaluation for SWMU 26
Residential and Commercial Carcinogens
NSA Memohis CSI

| NSA Memphis CSI          |               |         |                 |         |                |         |
|--------------------------|---------------|---------|-----------------|---------|----------------|---------|
|                          | Reference     |         | Residential RBC |         | Commercial RBC |         |
|                          | Concentration | Maximum | Carcinogen      | Risk    | Carcinogen     | Risk    |
| Parameter                | (mg/kg)       | (mg/kg) | (mg/kg)         | Ratio   | (mg/kg)        | Ratio   |
| Arsenic                  | 13.1          | 5.7     | 0.43            |         | 3.8            |         |
| Barium                   | 19.1          | 82.8    |                 |         |                |         |
| Benzo(a)anthracene       |               | 0.11    | 0.88            | 1.3E-07 | 7.8            | 1.4E-08 |
| Benzo(a)pyrene           |               | 0.099   | 0.088           | 1.1E-06 | 0.78           | 1.3E-07 |
| Benzo(b)fluoranthene     |               | 0.11    | 0.88            | 1.3E-07 | 7.8            | 1.4E-08 |
| Benzo(g,h,i)perylene     |               | 0.051   |                 |         |                |         |
| Benzo(k)fluoranthene     |               | 0.089   | 8.8             | 1.0E-08 | 78             | 1.1E-09 |
| * Beryllium              | 0.96          | 0.53    | 0.15            |         | 1.3            |         |
| Bis(2-Ethylhexyl)phthala | te            | 0.061   | 46              | 1.3E-09 | 410            | 1.5E-10 |
| Chromium                 | 26.4          | 15.2    |                 |         |                |         |
| Chrysene                 |               | 0.11    | 88              | 1.3E-09 | 780            | 1.4E-10 |
| Cobalt                   | 15            | 8.5     |                 |         |                |         |
| Fluoranthene             |               | 0.22    |                 |         |                |         |
| Indeno(1,2,3-cd)pyrene   |               | 0.048   | 0.88            | 5.5E-08 | 7.8            | 6.2E-09 |
| Lead                     | 28.7          | 19.5    |                 |         |                |         |
| Nickel                   | ND            | 21.8    |                 |         |                |         |
| Phenanthrene             |               | 0.12    |                 |         |                |         |
| Pyrene                   |               | 0.19    |                 |         |                |         |
| Silver                   | ND            | 1.6     |                 |         |                |         |
| Vanadium                 | 49.6          | 25      |                 |         |                |         |
| Zinc                     | 88.3          | 65.1    |                 |         |                |         |
|                          |               | ILCR    | SUM             | 1E-06   | SUM            | 2E-07   |

### NOTES:

ILCR Incremental lifetime excess cancer risk

HI Hazard index

Blank spaces Indicates not applicable

NO Not detected

- All concentrations are in parts per million (mg/kg).
- The maximum concentration reported for each contaminant was used to develop the table above.
- Soil sample data were from the surface (0-1') interval only.
- Screening values (RBCs) are from the July to December 1995
   Risk-Based Concentration (RBC) Table (October 20, 1995 USEPA
   Region III RBC memo).
- The maximum lead (Pb) concentration reported at SWMU 26 was 19.5 mg/kg. This is less than the 400 mg/kg residential soil screening level for total lead (USEPA OSWER Directive 9355.4-12).
- The RBC for pyrene was used as a surrogate for phenanthrene and benzo(g,h,i)perylene, which do not have RBCs.
- This metal was excluded from the risk ratio because the maximum reported concentration is less than the corresponding reference concentration.

Table 7-2
Preliminary Risk Evaluation for SWMU 26
Residential and Commercial Noncarcinogens
NSA Memphis CSI

|   | NOA MEMPILS CO.            | Reference     |         | Residential RBC | **       | Commercial RBC | Hazard   |
|---|----------------------------|---------------|---------|-----------------|----------|----------------|----------|
|   |                            | Concentration | Maximum | Noncarcinogen   | Hazard   | Noncarcinogen  |          |
|   | Parameter                  | (mg/kg)       | (mg/kg) | (mg/kg)         | Ratio    | (mg/kg)        | Ratio    |
|   | America                    | 13.1          | 5.7     |                 |          |                |          |
| _ | Arsenic                    | 19.1          | 82.8    | 5500            | 0.015    | 140000         | 0.00059  |
|   | Barium                     | 17.1          | 0.11    | 3500            | 0.015    | 1.000          | ******   |
|   | Benzo(a)anthracene         |               |         |                 |          |                |          |
|   | Benzo(a)pyrene             |               | 0.099   |                 |          |                |          |
|   | Benzo(b)fluoranthene       |               | 0.11    |                 |          | (1000          | 8.36E-07 |
|   | Benzo(g,h,i)perylene       |               | 0.051   | 2300            | 2.22E-05 | 61000          | 8.30E-U/ |
|   | Benzo(k)fluoranthene       |               | 0.089   |                 |          |                |          |
|   | Beryllium                  | 0.96          | 0.53    |                 |          |                |          |
|   | Bis(2-Ethylhexyl)phthalate |               | 0.061   |                 |          |                |          |
| • | Chromium                   | 26.4          | 15.2    | 390             |          | 10000          |          |
|   | Chrysene                   |               | 0.11    |                 |          |                |          |
| * | Cobalt                     | 15            | 8.5     | 4700            |          | 120000         |          |
|   | Fluoranthene               |               | 0.22    | 3100            | 7.10E-05 | 82000          | 2.68E-06 |
|   | Indeno(1,2,3-cd)pyrene     |               | 0.048   |                 |          |                |          |
| * | Lead                       | 28.7          | 19.5    |                 |          |                |          |
|   | Nickel                     | ND            | 21.8    | 1600            | 0.014    | 41000          | 0.00053  |
|   | Phenanthrene               |               | 0.12    | 2300            | 5.22E-05 | 61000          | 1.97E-06 |
|   | Pyrene                     |               | 0.19    | 2300            | 8.26E-05 | 61000          | 3.11E-06 |
|   | Silver                     | ND            | 1.6     | 390             | 0.0041   | 10000          | 0.0002   |
| * |                            | 49.6          | 25      | 550             |          | 14000          |          |
|   | Zinc                       | 88.3          | 65.1    | 23000           |          | 610000         |          |
|   |                            |               | ні      | SUM             | 0.033    | SUM            | 0.0013   |

### NOTES:

ILCR Incremental excess lifetime cancer risk
HI Hazard index
Blank spaces Indicates not applicable
ND Not detected

- All concentrations are in parts per million (mg/kg).
- The maximum concentration reported for each contaminant was used to develop the table above.
- Soil sample data were from the surface (0-1') interval only.
- Screening values (RBCs) are from the July to December 1995
  Risk-Based Concentration (RBC) Table (October 20, 1995 USEPA
  Region III RBC memo).
- The maximum lead (Pb) concentration reported at SWMU 26 was
   19.5 mg/kg. This is less than the 400 mg/kg residential soil
   screening level for total lead (USEPA OSWER Directive 9355.4-12).
- The RBC for pyrene was used as a surrogate for phenanthrene and benzo(g,h,i)perylene, which do not have RBCs.
- Compound was excluded from the risk ratio because the maximum reported concentration is less than the corresponding reference concentration.

Benzo(a)pyrene was the only organic compound that exceeded its residential RBC. No constituent exceeded both the applicable USEPA RBCs and the established background RC for surface soil samples at NSA Memphis.

This PRE does not evaluate the potential exposure that might be experienced by a construction worker should the acid neutralization unit be removed in the future. This would require an acute or subchronic assessment of subsurface soil data. USEPA uses an exposure duration of 25 years — a chronic exposure scenario. Exposure durations less than seven years, as would be assumed for a construction worker scenario, are considered acute or subchronic. USEPA used chronic-based toxicological information when calculating RBCs, or USEPA makes conservative adjustments to reflect chronic exposure. In addition to the effect the exposure duration differences would have on a construction worker's cumulative risk and hazard estimates, toxicological information used by USEPA to calculate RBCs would be adjusted to reflect acute or subchronic toxicological endpoints rather than the chronic endpoints typically used. Acute and subchronic thresholds are based on lower exposure durations than chronic thresholds, and higher concentrations are generally necessary to elicit observable toxic effects. Higher thresholds for toxic effects result in less conservative toxicological information, which would be used to adjust RBCs for either acute or subchronic exposure. Because a construction worker would be exposed under either acute or subchronic conditions, and RBCs based on chronic exposure are generally more conservative, the commercial site worker scenario presented in this PRE would be a more conservative scenario than that for a construction worker.

The Preferred Reuse Alternative in the *Base Reuse and Development Plan* (RKG Associates Inc., 1995), indicates the most likely reuse of the parcel of land containing SWMU 26 will be for light industrial operations. Due to the nature of this proposed use, a commercial setting can be assumed to evaluate risk. With respect to the commercial scenario, the resulting ILCR and HI were well below the established criteria of 10<sup>-4</sup> and 1, respectively. In addition, the resulting

Revision 2: September 25, 1996

ILCR and HI for the residential scenario were below the established 104 ILCR threshold and

the HI threshold of 1.

**Conclusions and Recommendations** 

Based on the information gathered during this investigation, the following conclusions and

recommendations have been reached:

• SWMU 26 will likely be used for light industrial operations.

• Twenty-one semivolatile organic compounds and inorganics were detected in the soil

sample collected from the surface interval.

Maximum reported concentrations of arsenic and beryllium exceeded residential soil

RBCs, and the reported concentration for arsenic exceeded the corresponding commercial

RBC. However, the detected concentrations of arsenic and beryllium do not exceed the

background RCs as shown on Tables 7-1 and 7-2.

Based on a PRE performed on data from the sample collected from the 0 to 1-foot bls

interval:

Carcinogens — Both the commercial and residential ILCRs did not exceed the 10-4

threshold, indicating suitability for lease with no further action for both

commercial and residential land use.

- Noncarcinogens — Both the *commercial* and *residential* HIs did not exceed 1,

indicating suitability for lease with no further action for both commercial and

residential land use.

7-6

Revision 2: September 25, 1996

### 8.0 CONCLUSIONS AND RECOMMENDATIONS

One surface soil sample collected next to the neutralization unit was analyzed for SVOCs, pesticide/PCBs, and Appendix IX metals, and the results were used to prepare a PRE. Subsurface soil samples were collected from three intervals at three locations surrounding the N-102 Battery Acid Neutralization Unit and from one location next to the sanitary sewer line which runs along the south side of Funafuti Street. The samples were analyzed for the following metals: arsenic, cadmium, lead, nickel, mercury, and zinc. Based on the results of this investigation, the following conclusions have been reached:

- Low concentrations of SVOCs were detected in the surface soil sample collected immediately south of the neutralization unit, likely originating from storm water runoff from the adjacent asphalt parking lot. Only one SVOC, benzo(a)pyrene, exceeded its residential RBC; however, it did not exceed its industrial RBC or its applicable SSL. Two inorganics in the surface soil sample exceeded RBCs. Arsenic exceeded the industrial RBC, and beryllium exceeded the residential RBC. However, arsenic and beryllium are naturally occurring compounds at NSA Memphis, and neither detected concentration exceeded its respective RC or SSL. The only inorganic which exceeded both the RC and the SSL was nickel in the surface soil sample; however, the detected concentration did not exceed the residential RBC. It should be noted that nickel's RC for subsurface soil is 59.8 mg/kg.
- Detected concentrations of inorganics in each subsurface soil sample did not exceed their
   RCs (2 times the mean background concentration) or USEPA SSLs.
- The PRE concluded that the property is suitable for lease for either residential or commercial land use.

Based on the results of the Geoprobe investigation and the PRE at SWMU 26, no further action is recommended for this site.

This page intentionally left blank.

### 9.0 REFERENCES

- ERC Environmental and Energy Services Company/EDGe (April 1990). Visual Site Inspection Report, NAS Memphis, Millington, TN. ERC/EDGe: Nashville, Tennessee.
- EnSafe/Allen and Hoshall (September 18, 1996). Technical Memorandum Assemblies A through D Background Reference Concentrations. E/A&H: Memphis, Tennessee.
- EnSafe/Allen and Hoshall (1996), Assembly C Confirmatory Sampling Investigation Report,

  Naval Support Activity Memphis. Revision 1 (May 24, 1996). E/A&H:

  Memphis, Tennessee
- EnSafe/Allen & Hoshall (1995). Assembly C Confirmatory Sampling Investigation Report, Naval Support Activity Memphis. Revision 0 (November 1, 1995). E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1995). Assembly C Site Investigation Plans, Naval Air Station Memphis. E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1994). Comprehensive RFI Work Plan for Naval Air Station Memphis. E/A&H: Memphis, Tennessee.
- Kingsbury, James A. and John K. Carmichael (1995). Hydrogeology of Post-Wilcox Group Stratigraphic Units in the Area of the Naval Air Station Memphis, Near Millington, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 95-4011, one sheet.

- RKG and Associates (1995). Memphis Naval Air Station Base Reuse and Economic Development Plan. RKG Associates: Durham, New Hampshire.
- United States Environmental Protection Agency (1995). Risk-Based Concentration Table, July to December, 1995. USEPA Region III: Philadelphia, Pennsylvania.
- United States Environmental Protection Agency (November 1994). Guidance on Preliminary Risk Evaluations for the Purpose of Reaching a Finding of Suitability to Lease. USEPA November 1994 Technical Memorandum. USEPA Region IV: Atlanta, Georgia.
- United States Environmental Protection Agency (July 1994). OSWER Directive # 9355.4-12:

  Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action
  Facilities. USEPA: Washington, D.C.
- United States Environmental Protection Agency (1991). Standard Operating Procedures and Quality Assurance Manual. USEPA Region IV: Atlanta, Georgia.
- United States Geological Survey (1995). Oral and written communication with Mr. Jack Carmichael. USGS: Nashville, Tennessee.

## Appendix A

Analytical Results — N-102 Battery Acid Neutralization Unit Contents

TESTING & CONSULTING INC. **ENVIRONMENTA®** 2924 WALNUT GROVE RD - MEMPHIS, YN 38111 - PHONE (901) 327-2760 FAX (901) 327-6394

July 14, 1992

Ms. Jan Campbell Del-Jen, Inc. (NAS) P.O. Box 84188 Hillington, TN 38054

REF: ANALYTICAL TESTING SAMPLE DATE: 6/29/92

SITE ID: SAMPLE ID: NAS

SWM4 #Z6

NORTH 102 BATTERY ACID (LIQUID-SOLID)

Dear Ms. Campbell:

The above referenced sample his been analyzed per your instructions. The tests were performed in or laboratory (#02027) in accordance with the Solid Waste Hanual, SW-84. The sample was leached/filtered according to Hethod 1311, Toxicity Characteristic Leaching Procedure. The results are shown on the attached Analysis Data Sheets.

Please call our office if you have any questions.

Sincerely,

Randall H. Thomas Vice President

jŵ

Attachment

0629-034

Post-It and fax transmittal memo 7671 of pages > 5000 40,0 Dept. Fm 966-5461 FARE OSN 63-0465

## ENVIRONMENTAL TESTING AND CONSULTING, INC. MEMPHIS, TN FCLP METALS

¢lient Name : Del-Jen, Inc.

site ID : NAS

Sample ID : NORTH 102 BATTERY ACID Sample Date : 6/29/92 bate Arrived : 6/29/92

File Name : \_0629-034\_ Sample ID : \_0629-034-1

hate of TCLP Extraction : 7/01/92, Leachate/Filtrate Combined Latrix Classification : Miscellaneous/Liquid-Solid

| Metals                                                                 | Results<br>(ppm)                                                                | MS<br>REC1 | Results<br>Fec(ppm) <sup>2</sup>        | Regulat<br>Level<br>(ppm)                       | Method<br>(SW-846)                                           | Date<br>Analyzed                                                                     | Ву                                     |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|
| Arsenic Barium Cadmium Chromium Lead Mercury Silver Selenium VOCs BNAs | 0.061<br>0.30<br>0.066<br><0.02<br>2.66<br>0.0015<br><0.01<br>0.006<br>See Atta |            | 0.30<br>0.066<br>0.02<br>2.80<br>0.0015 | 5.0<br>100.0<br>1.0<br>5.0<br>5.0<br>0.2<br>5.0 | 7061<br>7080<br>7130<br>7190<br>7420<br>7470<br>7760<br>7741 | 7/08/92<br>7/02/92<br>7/02/92<br>7/01/92<br>7/09/92<br>7/01/92<br>7/02/92<br>7/08/92 | JF<br>BB<br>BB<br>BB<br>JF<br>BB<br>JF |

| Peteotion Peteotion | Limits (ppm) |
|---------------------|--------------|
| Arsenic             | 0.002        |
| Barlum              | 0.03         |
| Cadmium             | 0.002        |
| Chromium            | 0.02         |
| Hergury<br>Lead     | 0.05         |
| Hercury             | 0.001        |
| Bilver              | 0.01         |
| Bilver<br>Selenium  | 0.002        |

- Matrix Spike (1) Percent Recovery for Matrix Classification - Sample results factored for Matrix Recovery Bias per Federal Regist June 29, 1990.

NF - No Factor applied.

Randall H. Thomas Vice President

4

### ENVIRONHENTAL TESTING AND CONSULTING, INC.

HEHRHIS, TN
ORGANIC ANALYSIS DATA SHEET
TCLP BASE NEUTRALS AND ACID EXTRACTABLES

CLIENT NAME 1 \_DEL-JEN, INC. PROJECT # SITE ID \_NAS \_RR ANALYST 1 ı SAMPLE ID NORTH 102 BATTER ACID SAMPLE DATE : \_06/29/92 DATE ARRIVED : \_0629-034.DOC\_ : \_0629-034\_\_\_\_ \_06/29/92 FILE NAME : MATRIX TCLP LEACHATE/FILTRATE SAMPLE # DATE OF TCLP EXTRACTION : \_07/01/9 : \_HISC LIQUID/SOLID MATRIX CLASSIFICATION \_\_\_\_\_\_METHOD (SW-846): \_8270 DATE EXTRACTED - \_07/08/97 DATE ANALYZED : \_07/16-17/92 REGULATOR' SAMPLE NS SAMPLE REC<sup>2</sup> DL1 RESULTS **LBVEL** RESULTS FAC(ppm)3 COMPOUND (%) (mqq) (ppm) (mqq) \_0.05 0.13 2, #-Dinitrotoluene BDL NF BDL 0.13 Hexachlorobenzene BDL \_0.05 NF BDL BDL \_0.05 0.50 NF Hekachlorobutadiene BDL \_0.05 3.00 NF BDL Hekachloroethane BDL \_0.05 200 ADL 2-Hethylphenol(o-cresol) NF BDL \_200 3-Methylphenol(m-cresol) BDL NF BDL \_0,05 \_0.05 \_200. 4-Methylphenol(p-cresol) NP BDL BUL \_0.05 2.00 Nitrobenzene NP BOL BDL Pentachlorophenol
2,8,5-Trichlorophenol
2,8,6-Trichlorophenol
Pyridine \_0.05 100 0.06 85 0.05 NF \_400, \_0.05 BOL BDL \_0.05 2.00 NF BDL BDL BDL \_0.05 \_5.00\_\_ NF BDL. QC LINITS EXP(ng/ul) **TREC** SURROGATE STANDARDS RESULT \_111 111 35-114 Nitrobenzene-d5 100 2-Fluorobiphenyl 112 43-116 100 \_112 4-Terphonyl-014

DETECTION LIMIT

2,4,6-Tribromophenol 2-Fluorophenol

\_104

\_171

199

\_196\_

100

200

200

200

104

100

.86

98

33-141

10-123

21-100

10-94

BUL - BELOW DETECTION LIMIT - NO FACTOR APPLIED.

Algoritory Hanager

Phenol-D6

1

2

<sup>-</sup> MATRIX SPIKE RECOVERY FOR HATRIX CLASSIFICATION - SAMPLE RESULTS FACTORED FOR MATRIX RECOVERY BIAS PER FEDERAL REGISTE JUNE 29, 1990.

# ENVIRONMENTAL TESTING AND CONSULTING, INC. HEMPHIS, TN ORGANIC ANALYSIS DATA SHEET TCLP VOLTTILE COMPOUNDS

PROJECT ! CLIENT NAME : \_DEL-JEN, INC. \_LS SITE ID ANALYST I \_NAS NORTH 102 BATTERY ACID SAMPLE ID SAMPLE DATE : \_06/29/92\_ : \_06/29/92 : \_TCLP LEACHATE/F LTRATE FILE NAME : \_0629-034.DOC\_ SAMPLE # : \_0629-034\_\_\_\_ DATE ARRIVED MATRIX

DATE OF TCLP EXTRACTION : \_07/01/2\_ HATRIX CLASSIFICATION : \_HISC L QUID/SOLID

DATE ANALYZED : \_07/14/92\_ METHOD (SW-846): \_8240\_\_\_\_

| сонроинд                                                                                                                                                                             | SAMPLE<br>RESULTS<br>(ppm)              | _ | HS<br>REC <sup>2</sup><br>(*) | SAMPLE<br>RESULTS<br>PAC(ppm) <sup>3</sup> | DL <sup>1</sup> (ppm)                                                        | REGULATOI<br>LEVEL<br>(ppm)                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|-------------------------------|--------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| Benzene Carbon Tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethane Methyl Ethyl Ketona Tetrachloroethene Trichloroethene Vinyl Chlorida | BDL |   | NF NF NF NF NF NF NF NF       | BOL    | _0.005<br>_0.005<br>_0.050<br>_0.050<br>_0.005<br>_0.005<br>_0.005<br>_0.005 | 0.50. 0.50. 100 6.00. 7.50. 0.50. 0.70. 200 0.70. 0.50. 0.20 |

| SURROGATE STANDARDS   | RESULT | EXP(ug/L) | *REC | QC LIMITS |
|-----------------------|--------|-----------|------|-----------|
|                       |        |           |      |           |
| 1/2-Dichloroethane-d4 | _39.9  | 50.0      | 80   | 76-114    |
| Toluene-d8            | _45.3_ | 50.0      | 91   | 88-110    |
| 4-Bromofluorobenzene  | _46.6  | 50.0      | 93   | 86-115    |

1 - DETECTION LIHIT

- HATRIX SPIKE RECOVERY FOR MATRIX CLASSIFICATION.
- SAMPLE RESULTS PACTORED FOR MATRIX RECOVERY BIAS PER FEDERAL REGIST!
JUNE 29, 1990.
BDL - BELOW DETECTION LIMIT

#F - NO FACTOR APPLIED.

LABORATOR MANAGER

| Post-It* brand fax transmittal | mema 7671 (# of pages > 4 |
|--------------------------------|---------------------------|
| James whethy                   | From Lt. GRUZESKY         |
| Co-Southern Division           | CONAS - Memphis           |
| Dept.                          | Phone : 966 - 5461        |
| ASN 563-0965                   | (DSN) 964-5300            |



### Appendix B

Analytical Results for Surface and Subsurface Soil Samples

FORMAT: XXXX \ 1 2 3 4 5 6 7 8 9 0

XXXX \ OPTIONAL project prefix

· SITE where sample collected 1 2 3

- MATRIX / QC code 5 6 7 8 - SAMPLING LOCATION

90 · DEPTH, INTERVAL, SERIAL #

All spaces MUST be filled and no extra characters included. Use zeroes as space-fillers. Indicate MS/MSDs on COCs.

### MATRIX/QC CODES:

- S soil (surface, borings, and trenches)
- C soil duplicate sample
- M sediment (settled, fluid-borne solid)
- N sediment duplicate
- G groundwater
- H groundwater duplicate sample
- W surface water
- R surface water duplicate sample
- U sludge
- Y sludge duplicate
- A air
- Z liquid waste (including IDW drums)
- V solid waste (including IDW drums)
- T trip blank
- E equipment rinsate blank
- D DI system blank
- P potable water blank
- F field blank
- L filter blank
- B EPA blind spike sample
- 2 cement blank
- 3 drilling mud
- 4 grout blank
- 5 bentonite blank
- 6 sand blank

DATALCP3

# NSA MEMPHIS

Page:

| ORIGINAL ID>  LAB SAMPLE ID>  ID FROM REPORT>  SAMPLE DATE>  MATRIX> | 026-S-0005-01<br>026SSB0501<br>143764S<br>026SSB0501<br>03/06/96<br>Soil<br>MG/KG |                  |            |    |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|------------|----|
| CAS # Parameter                                                      | 1719 VAL                                                                          | tribus igit in a |            |    |
| SB Antimony AS Arsenic BA Barium BE Beryllium CD Cadmium             | 7.3 UR<br>5.7<br>82.8<br>0.53 J<br>1.2 UJ                                         |                  |            |    |
| CR Chromium CO Cobalt CU Copper PB Lead HG Mercury                   | 15.2 J<br>8.5 J<br>15.6 U<br>19.5<br>0.12 U                                       | and Alberta      |            |    |
| NI Nickel<br>SE Selenium<br>AG Silver<br>TL Thallium                 | 21.8<br>0.34 U<br>1.6 J<br>0.49 U                                                 |                  |            |    |
| V Vanadium ZN Zinc SN Tin                                            | 25.<br>65.1<br>28.3 U                                                             |                  | i septimin |    |
|                                                                      |                                                                                   |                  |            |    |
|                                                                      |                                                                                   |                  |            |    |
|                                                                      |                                                                                   |                  |            |    |
|                                                                      |                                                                                   |                  |            | i. |

DATALCP3 05/17/96

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 26 - SURFACE SOIL SAMPLES

Page: 2 Time: 13:02

| 05/17/96                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                          | MEMPHIS, RFI 26 - SURFACE | S | 11me: 15:02 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|---|-------------|
| SW846-PEST                                                                                                                                                                    | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS>                                                                                                                                                                                    | 026-S-0005-01<br>026SSB0501<br>143764<br>026SSB0501<br>03/06/96<br>03/11/96<br>03/15/96<br>Soil<br>ug/Kg |                           |   |             |
| CAS                                                                                                                                                                           | # Parameter                                                                                                                                                                                                                                                                                          | 1719 VAL                                                                                                 |                           |   |             |
| 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-7 1024-57-7 959-98-8 60-57-72-55-9 72-20-8 33213-65-9 72-54-7 1031-07-1 50-29-7 7421-93-5103-71-5103-74-8 8001-35-12789-03- | alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Technical Chlordane Aroclor-1016 | 2. U                                                                  |                           |   |             |
| 11104-28-<br>11141-16-<br>53469-21-<br>12672-29-<br>11097-69-                                                                                                                 | 2 Aroclor-1221<br>5 Aroclor-1232<br>9 Aroclor-1242<br>6 Aroclor-1248<br>1 Aroclor-1254<br>5 Aroclor-1260                                                                                                                                                                                             | 41. U<br>41. U<br>41. U<br>41. U<br>41. U<br>41. UJ                                                      |                           |   |             |

DATALCP3 05/17/96

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 26 - SURFACE SOIL SAMPLES

Page: 3 Time: 13:02

| SM846-SVOA                                                                                           | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS>                                                                                                                                   | 026-S-0005-01<br>026SSB0501<br>143764<br>026SSB0501<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg   |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CAS #                                                                                                | Parameter                                                                                                                                                                                                                                           | 1719 VA                                                                                                    | L NAME |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 95-57-8<br>541-73-1<br>106-46-7<br>95-50-1<br>95-48-7<br>108-60-1<br>106-44-5<br>621-64-7<br>67-72-1 | Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol (o-Cresol) 2,2'-oxybis(1-Chloropropane) 4-Methylphenol (p-Cresol) N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene | 430. U<br>430. U |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 78-59-1<br>88-75-5<br>105-67-9<br>120-83-2<br>120-82-1                                               | Isophorone<br>2-Nitrophenol<br>2,4-Dimethylphenol<br>2,4-Dichlorophenol<br>1,2,4-Trichlorobenzene                                                                                                                                                   | 430. U<br>430. U<br>430. U<br>430. U<br>430. U                                                             |        | 후 · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 106-47-8<br>111-91-1<br>87-68-3<br>59-50-7                                                           | Naphthalene<br>4-Chloroaniline<br>bis(2-Chloroethoxy)methane<br>Hexachlorobutadiene<br>4-Chloro-3-methylphenol<br>2-Methylnaphthalene                                                                                                               | 430. U<br>430. U<br>430. U<br>430. U<br>430. U                                                             |        |     | Minutes of the second of the s |  |  |
| 77-47-4<br>88-06-2<br>95-95-4<br>91-58-7                                                             | Hexachlorocyclopentadiene<br>2,4,6-Trichlorophenol<br>2,4,5-Trichlorophenol<br>2-Chloronaphthalene                                                                                                                                                  | 430. U<br>430. U<br>1100. U<br>430. U<br>1100. U                                                           |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 131-11-3<br>208-96-8<br>606-20-2<br>99-09-2                                                          | 2-Nitroaniline<br>Dimethyl phthalate<br>Acenaphthylene<br>2,6-Dinitrotoluene<br>3-Nitroaniline                                                                                                                                                      | 430. U<br>430. U<br>430. U<br>1100. U                                                                      |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 51-28-5<br>100-02-7                                                                                  | Acenaphthene<br>2,4-Dinitrophenol<br>4-Nitrophenol<br>Dibenzofuran                                                                                                                                                                                  | 430. U<br>1100. U<br>1100. U<br>430. U                                                                     |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

DATALCP3 05/17/96

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 26 - SURFACE SOIL SAMPLES

Page: 4 Time: 13:02

| SWPIO 20 - SORFACE BOTH STATE BE                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| SM846-SVOA SAMPLE ID                                                                                                                                                                                                                                                                                                      | 026SSB0501<br>143764<br>026ssb0501<br>03/06/96<br>03/11/96<br>03/12/96                                                                                                                                   |                                                                                                                |  |  |  |  |  |  |  |
| CAS # Parameter                                                                                                                                                                                                                                                                                                           | 1719 VAL                                                                                                                                                                                                 | 네이어 15명 전 15명보다 (15명보도) 1명보고 1 시대 15명 15명보고 15통 15명보다 15명보고 1 1명보고 1 |  |  |  |  |  |  |  |
| 121-14-2 84-66-2 7005-72-3 4-Chlorophenylphenylether 86-73-7 100-01-6 534-52-1 86-30-6 N-Nitrosodiphenylamine 4-Bromophenyl-phenylether 87-86-5 85-01-8 18-74-1 87-86-5 85-01-8 120-12-7 86-74-8 84-74-2 206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-84-0 205-99-2 207-08-9 50-32-8 191-24-2 Pinitrotoluene  2 | 430. U 430. U 430. U 430. U 1100. U 1100. U 430. U 110. J 110. J 110. J 110. J 110. J 89. J 99. J 48. J 430. U 51. J | A                                                                                                              |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                                |  |  |  |  |  |  |  |

DATALCP3 10/30/95

### NAS MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26 - Primary Samples

Page: 1 Time: 11:24

| SWMU 26 - Primary Samples                                                                                                                                                      |                                                                                    |                                                                                                                  |                                                                                     |                                                                                     |                                                                                                               |                                                                                     |                                                                                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| METAL                                                                                                                                                                          | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 026-s-0001-04<br>026s000104<br>4-124590s<br>026s000104<br>06/05/95<br>Soil<br>MG/KG                              | 026-s-0001-08<br>026s000108<br>4-124591s<br>026s000108<br>06/05/95<br>Soil<br>MG/KG | 026-S-0001-18<br>026S000118<br>4-124592S<br>026S000118<br>06/05/95<br>Soit<br>MG/KG | 026-S-0002-04<br>026S000204<br>4-124593S<br>026S000204<br>06/05/95<br>Soil<br>MG/KG                           | 026-s-0002-08<br>026s000208<br>4-124594s<br>026s000208<br>06/05/95<br>Soil<br>MG/KG | 026-s-0002-18<br>026s000218<br>4-124595s<br>026s000218<br>06/05/95<br>Soil<br>MG/KG |  |  |  |
| CAS # Parameter                                                                                                                                                                |                                                                                    | 1439 VAL                                                                                                         | 1439 VAL                                                                            | 1439 VAL                                                                            | 1439 VAL                                                                                                      | 1439 VAL                                                                            | 1439 VAL                                                                            |  |  |  |
| AS Arsenic CD Cadmium Lead HG Mercury NI Nickel ZN Zinc SB Antimony BA Barium BE Beryllium CR Chromium CO Cobalt CU Copper SE Selenium AG Silver TL Thallium V Vanadium SN Tin |                                                                                    | 3.6 UJ<br>0.75 UJ<br>6.3<br>0.13 U<br>11.8 J<br>29.2<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR | 5.1 J 0.76 UJ 7.6 0.12 U 15.9 J 32.3 NR         | 2. UJ 0.73 UJ 5. 0.12 U 13.5 J 17.7 NR          | 9. J<br>0.79 UJ<br>7.8<br>0.13 U<br>18.8 J<br>42.<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR | 3.8 J 1. J 6.1 0.12 U 16.8 J 31.6 NR            | 2.9 UJ 0.72 UJ 5.8 0.12 U 14.5 J 15.1 NR        |  |  |  |

DATALCP3 10/30/95

## NAS MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26 - Primary Samples

Page: 2 Time: 11:24

| METAL                                                                                                                                                                          | SAMPLE ID> ORYGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 026-S-0003-04<br>026S000304<br>4-124596S<br>026S000304<br>06/05/95<br>Soil<br>MG/KG | 026-S-0003-08<br>026S000308<br>4-124597S<br>026S000308<br>06/05/95<br>Soil<br>MG/KG | 026-S-0003-18<br>026S000318<br>4-124598S<br>026S000318<br>06/05/95<br>Soil<br>MG/KG | 026-S-0004-04<br>026S000404<br>4-124599S<br>026S000404<br>06/05/95<br>Soil<br>MG/KG          | 026-s-0004-08<br>026s000408<br>4-124600s<br>026s000408<br>06/05/95<br>Soil<br>MG/KG | 026-S-0004-15<br>026S000415<br>4-124601S<br>026S000415<br>06/05/95<br>Soil<br>MG/KG |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| CAS # Parameter                                                                                                                                                                |                                                                                    | 1439 VAL                                                                            | 1439 VAL                                                                            | 1439 VAL                                                                            | 1439 VAL                                                                                     | 1439 VAL                                                                            | 1439 VAL                                                                            |
| AS Arsenic CD Cadmium Lead HG Mercury NI Nickel ZN Zinc SB Antimony BA Barium BE Beryllium CR Chromium CO Cobalt CU Copper SE Selenium AG Silver TL Thallium V Vanadium SN Tin |                                                                                    | 6.6 J 0.97 J 5.9 0.12 U 18.5 J 34.7 NR          | 0.49 UJ 0.96 J 7.4 0.12 U 15.8 J 29.  NR        | 1.1 UJ 0.77 J 7.1 0.12 U 11.1 J 18. NR          | 3.9 J<br>0.78 J<br>0.49 U<br>0.12 U<br>19.9 J<br>30.1 NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR | 7.3 J 1.2 J 5.2 0.12 U 16.4 J 23.8 NR           | 1.7 UJ 0.68 UJ 6.5 0.12 U 11.4 J 21.  NR        |

ASSEMBLY C CSI REPORT NAVAL SUPPORT ACTIVITY MEMPHIS MILLINGTON, TENNESSEE

RCRA FACILITY INVESTIGATION SWMU 27 — NORTHSIDE SEWAGE TREATMENT PLANT

**REVISION 2** 

CTO-094

Contract No: N62467-89-D-0318

Prepared for:

Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina

Prepared by:

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 (901) 383-9115



# **Table of Contents**

| EXEC                                 | UTIVE SUMMARY                                                                                                                                                                                                                                                  |  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.0                                  | INTRODUCTION                                                                                                                                                                                                                                                   |  |  |  |  |
| 2.0                                  | SITE DESCRIPTION AND HISTORICAL INFORMATION 2-1 2.1 Site Description 2-1 2.2 Historical Site Operations 2-5                                                                                                                                                    |  |  |  |  |
| 3.0                                  | PREVIOUS INVESTIGATIONS                                                                                                                                                                                                                                        |  |  |  |  |
| 4.0                                  | FIELD INVESTIGATIONS AND METHODOLOGY  4.1 Investigation of Soil and Groundwater  4.2 Sampling Rationale and Methods  4.3 Sample Processing and Chain-of-Custody Procedure  4.4 Grouting Procedure  4.5 Decontamination Procedures  4.10                        |  |  |  |  |
| 5.0                                  | GEOLOGY AND HYDROGEOLOGY                                                                                                                                                                                                                                       |  |  |  |  |
| 6.0                                  | NATURE AND EXTENT OF CONTAMINATION 6-1 6.1 Background Reference Concentrations 6-2 6.2 Soil Sample Analytical Results 6-2 6.2.1 Surface Soil Samples 6-2 6.2.2 Subsurface Soil Samples 6-19 6.3 Groundwater Results 6-23 6.4 Summary of Nature and Extent 6-23 |  |  |  |  |
| 7.0                                  | PRELIMINARY RISK EVALUATION                                                                                                                                                                                                                                    |  |  |  |  |
| 8.0                                  | CONCLUSIONS AND RECOMMENDATIONS 8-1                                                                                                                                                                                                                            |  |  |  |  |
| 9.0                                  | REFERENCES 9-1                                                                                                                                                                                                                                                 |  |  |  |  |
| List of Figures                      |                                                                                                                                                                                                                                                                |  |  |  |  |
| Figure<br>Figure<br>Figure<br>Figure | 1-2       Digital Orthophotograph       1-5         2-1       Site Map       2-3                                                                                                                                                                               |  |  |  |  |

| Figure 6-1 | Background Sample Locations                                                    |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Figure 6-2 | Total VOCs in Surface Soil                                                     |  |  |  |  |  |  |  |
| Figure 6-3 | 6-3 Total Pesticides in Surface Soil 6-15                                      |  |  |  |  |  |  |  |
| Figure 6-4 |                                                                                |  |  |  |  |  |  |  |
| Figure 6-5 | Metals in Surface Soil                                                         |  |  |  |  |  |  |  |
| Figure 6-6 | VOCs in Groundwater                                                            |  |  |  |  |  |  |  |
| Figure 6-7 |                                                                                |  |  |  |  |  |  |  |
|            | List of Tables                                                                 |  |  |  |  |  |  |  |
| Table 6-1  | Detected Concentrations of VOCs, Pesticides, SVOCs, and Metals in Surface Soil |  |  |  |  |  |  |  |
| Table 6-2  | Detected Concentrations of VOCs and Metals in Subsurface Soil 6-7              |  |  |  |  |  |  |  |
| Table 6-3  | Detected Concentrations of VOCs in Groundwater 6-27                            |  |  |  |  |  |  |  |
| Table 7-1  | PRE for Residential and Commercial Carcinogens                                 |  |  |  |  |  |  |  |
| Table 7-2  | PRE for Residential and Commercial Noncarcinogens                              |  |  |  |  |  |  |  |
|            | List of Appendices                                                             |  |  |  |  |  |  |  |

Appendix A Analytical Data

#### LIST OF ACRONYMS AND ABBREVIATIONS

BRAC Base Realignment and Closure

bls below land surface cm/sec centimeters per second

CSI Confirmatory Sampling Investigation

DQO Data Quality Objectives E/A&H EnSafe/Allen & Hoshall

ft/day feet per day HI Hazard Index

ILCR Incremental Lifetime Excess Cancer Risk

MCL maximum contaminant level

 $\mu g/L$  micrograms per liter mg/kg milligrams per kilogram

ND not detected

NET National Environmental Testing, Inc.

NSA Naval Support Activity (formerly Naval Air Station)

PCBs polychlorinated biphenyls
PRE preliminary risk evaluation

QA/QC Quality Assurance/Quality Control

RBC risk-based concentration RC reference concentration

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation SWMU solid waste management unit

SSL soil screening level STP sewage treatment plant

SVOC semivolatile organic compound

THO target hazard quotient

TR target risk

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound

VSI visual site inspection

#### **EXECUTIVE SUMMARY**

The Assembly C Site Investigation Plans (E/A&H 1995) proposed two phases of investigation for a Confirmatory Sampling Investigation (CSI) at Solid Waste Management Unit (SWMU) 27, the Northside Sewage Treatment Plant at Naval Support Activity (NSA) Memphis. The first phase consisted of a hand-auger and Geoprobe investigation of the former sludge drying beds. Based on the results of the first phase, the second phase, consisting of advancing and sampling soil borings and monitoring wells, is not required. This report summarizes the activities conducted during the CSI's first phase and the resulting findings and conclusions.

During the Geoprobe investigation, nine surface soil and 18 subsurface soil samples collected from nine sampling locations were analyzed for volatile organic compounds (VOCs) and Appendix IX metals. To finalize the Resource Conservation and Recovery Act closure of the SWMU, a hand auger was used to collect additional surface soil at three of the sampling locations in the sludge drying beds; these samples were analyzed for semivolatile organic compounds (SVOCs) and pesticides/polychlorinated biphenyls. The surface soil sample results were used to prepare a Preliminary Risk Evaluation (PRE). Groundwater samples were collected from the upper fluvial deposits with a Geoprobe at six of the nine soil sampling locations. The groundwater samples were analyzed for VOCs only.

The only VOCs identified in surface and subsurface soil were low concentrations of isopropylbenzene/bromobenzene at Locations 3 and 6. No risk-based concentration (RBC) exists for either of these compounds, which could not be distinguished by the onsite laboratory instrumentation due to similar retention times.

Eight pesticides were detected in the three surface soil samples. The dieldrin concentration exceeded the industrial RBC and the soil screening level (SSL) in two samples and exceeded the residential RBC and the SSL in the third sample. However, dieldrin is ubiquitous to NSA Memphis due to its basewide aerial application during the 1950s and 1960s. Aldrin was detected above the SSL, but did not exceed its residential RBC.

Nineteen SVOCs were detected in the three surface soil samples. The concentration of benzo(a)pyrene exceeded the industrial RBC at one location, and exceeded the residential RBC at a second location. Benzo(a)anthracene exceeded both the residential RBC and the SSL at one location. Benzo(b)fluoranthene and dibenz(a,h)anthracene exceeded the residential RBC at one location, and chrysene exceeded the SSL at one location.

Sixteen metals were detected in the surface soil samples, most of which exceeded their background reference concentrations (RCs, or two times the mean background concentration) at NSA Memphis. Arsenic exceeded its RC, industrial RBC, and SSL at two locations. Beryllium was identified at concentrations above the residential RBC in most samples; however, the background RC of beryllium (0.96 milligrams per kilogram [mg/kg]) exceeds the residential RBC (0.15 mg/kg). No other metal exceeded its residential RBC. The SSL and the background RC were exceeded for barium at two sampling locations and for mercury at one location.

Sixteen metals were detected in the subsurface soil samples. Barium exceeded the SSL and the RC in one sample. Antimony and tin, which do not have SSLs, exceeded their RC in two subsurface soil samples each.

No VOCs were identified in groundwater by the onsite laboratory. Three groundwater samples were split and submitted to the offsite laboratory for confirmation analysis. The only VOCs identified in the split samples were acetone at two locations, toluene at one location, and carbon disulfide at one location. Acetone is a common laboratory artifact. No RBCs for tap water or maximum contaminant levels for drinking water were exceeded by VOCs detected in groundwater.

The PRE results indicate the property is suitable to lease for commercial land use. Based on the results of the first phase and the anticipated commercial land use of the property, no further action is recommended for SWMU 27.

#### 1.0 INTRODUCTION

As part of the U.S. Navy Installation Restoration Program, the following Confirmatory Sampling Investigation (CSI) report has been prepared for Solid Waste Management Unit (SWMU) 27, the Northside Sewage Treatment Plant, at Naval Support Activity (NSA) Memphis, Millington, Tennessee. Figures 1-1 and 1-2 provide a location map and aerial photograph, respectively, of SWMU 27.

As a result of the Base Closure and Realignment Act of 1990 (BRAC), a portion of NSA Memphis, which includes SWMU 27, will be closed and prepared for transfer to the City of Millington. Eight SWMU assemblies (i.e., groups) have been defined for the NSA Memphis Resource Conservation and Recovery Act (RCRA) Corrective Action Program. Four of these assemblies (A, B, C, and D) are on closing portions of the base and have been categorized and ranked according to their BRAC status. SWMU 27 is in Assembly C, which is composed of five SWMUs requiring CSIs to determine whether a release of contaminants has occurred and, if so, whether RCRA Facility Investigation (RFI) characterization will be required. The remaining four assemblies (E, F, G, and H) are on portions of the base that will remain open. The investigation, undertaken by EnSafe/Allen & Hoshall (E/A&H), adhered to the requirements of the Hazardous and Solid Waste Amendments portion (HSWA-TN002) of RCRA Permit No. TN2-170-022-600 and applicable regulations.

The Assembly C Site Investigation Plans (E/A&H, 1995) proposed two phases of investigation for the CSI at SWMU 27. The first phase consisted of a soil and groundwater investigation using a hand auger and truck-mounted Geoprobe equipment. Based on the results of the first phase, the second phase, consisting of installing and sampling soil borings and monitoring wells, is not required. The surface soil sample results were used to prepare a Preliminary Risk Evaluation (PRE). The PRE indicates the property is suitable to lease for commercial land use. This CSI report summarizes the activities conducted during the first phase of the CSI and provides conclusions, including a recommendation for no further action.





# **SWMU 27 BOUNDARY**





150

300 Ft.





RCRA FACILITY INVESTIGATION
NSA MEMPHIS
MILLINGTON, TENNESSEE

FIGURE 1-2
DIGITAL ORTHOPHOTOGRAPH
NORTHSIDE SEWAGE TREATMENT PLANT
SWMU 27

AML: homel/orl/steveleb\_d

#### 2.0 SITE DESCRIPTION AND HISTORICAL INFORMATION

#### 2.1 Site Description

SWMU 27 is the site of a former sewage treatment plant (STP) at the southwest corner of the NSA Memphis Northside near Dakar Street Extended and Outlet Avenue. The STP was constructed in 1943 and included a digester tank (N-44), a control house, six treatment tanks (N-45) and four sludge drying beds (N-46). The STP is no longer in use, and site features have been demolished. There are conflicting dates as to when the STP was demolished — either in the mid-1970s or as late as 1984. There are also reports of the operations discontinuing between the late 1940s and early 1950s, suggesting less than 15 years of operation. Figure 2-1 shows the locations of the former site features.

The site exhibits extensive revegetation, both natural and anthropogenic, which, based on the maturity of the trees, is likely the result of about a 20-year period of regrowth. A visual site inspection (VSI) was conducted by E/A&H in January 1995, when most of the vegetation was dormant. Although a previous VSI conducted in April 1990 did not identify traces of the STP, sparse winter vegetation made a few remnants more visible.

A small piece of a reinforced concrete surface was observed beneath approximately 4 to 6 inches of soil and detritus in the area of the former digester, indicating some remnant foundations or structures may still exist beneath the topsoil. On the western side of the site, approximately 150 feet of a 3-foot wide, 6-inch thick concrete walkway was exposed in several areas. In one such area, the top of an open-ended, 12-inch-diameter iron pipe was visible crossing beneath the walk. The walk was oriented east-to-west near the north edge of N-45 and extended to the old Illinois Central Gulf Railroad tracks, oriented northeast-southwest along the western site boundary. Although still quite prominent, this feature was not identified on the STP construction plans, and its purpose is unknown.



A large, octagonal concrete manhole/cap identified on the 1942 STP plans as "M.H. #3" is approximately 120 feet west of the former sludge drying beds. This manhole reportedly provides access to an 18-inch sewer discharge pipe and contains a 15-inch automatic flood gate. The rest of the site is overgrown, dominated by rows of planted pine trees with mixed deciduous trees and a thick understory. The dirt roadway east of the STP is still maintained to allow for occasional access. Beneath an inch of topsoil and high grass, the gravel drive to the north of the STP is also present. No other STP features were apparent during the 1995 VSI.

Several small sink holes are in the wooded areas, some of which contain standing water. The old Illinois Central Gulf Railroad track is approximately 450 feet west of the site. A drainage ditch parallels the western side of the railroad track (see Figure 1-1). Surface water at the site drains west-southwest, crosses under the railroad track through a culvert, and flows into the drainage ditch, which conveys the water approximately 700 feet southwest of the culvert where it enters North Fork Creek. North Fork Creek, in turn, conveys water southward for approximately 4,500 feet to the Big Creek Drainage Canal, which parallels the south boundary of NSA Memphis.

## 2.2 Historical Site Operations

While in operation, the STP reportedly received mostly sanitary waste from the Northside of the base. There was, however, a period during the 1940s and 1950s in which some industrial wastes (oils, solvents, and paints) were reportedly discharged to the sewage system from various operations. Water was removed from sewage sludge by pumping it onto the four 20-foot by 55-foot drying beds. The drying beds consisted of a three-layer filter substrate, made up of 8 inches of sand, 6 inches of pea gravel, and a 10- to 13-inch layer of coarse aggregate. Within the aggregate layer was a system of 6-inch drain lines to transport percolated water. Drying bed diagrams indicate that each bed was open to undisturbed earth below the aggregate substrate. This interface is most likely the release point for STP contaminants, and this is the only treatment process at the site during which waste was likely to directly contact native soil.

# 3.0 PREVIOUS INVESTIGATIONS

Before the CSI, no investigations were performed at SWMU 27.

Revision 2: September 25, 1996

#### 4.0 FIELD INVESTIGATIONS AND METHODOLOGY

The CSI soil and groundwater sampling program was intended to determine if contaminants associated with past activities at SWMU 27 were present. Specifically, the CSI objectives were:

- Determine the potential for subsurface soil contamination in the loess as a result of sludge drying practices.
- Determine the potential for groundwater contamination in the surficial aquifer as a result of sludge drying practices.
- Determine the suitability of the property for leasing by preparing a PRE.

This section summarizes the soil and groundwater sampling tasks during the first phase of the CSI, which was conducted using a hand auger and Geoprobe sampling equipment. The field sampling activities followed the procedures outlined in the U.S. Environmental Protection Agency (USEPA)- and Tennessee Department of Environment and Conservation-approved Comprehensive RFI Work Plan (E/A&H, 1994) and Assembly C Site Investigation Plans (E/A&H, 1995).

A description of the sample locations and the rationale for sampled intervals are presented in Sections 4.1 and 4.2, respectively, of this CSI report. Section 4.3 presents the specific sampling protocols (sample processing, labeling, and chain-of-custody documentation).

## **Analytical Parameters**

Nine surface soil samples, 18 subsurface soil samples, and six groundwater samples were collected during the CSI to determine the nature and extent of contamination by volatile organic compounds (VOCs), and metals associated with sludge drying practices at SWMU 27. In addition, three surface soil samples were also analyzed for chlorinated pesticides/polychlorinated

4-1

Revision 2: September 25, 1996

biphenyls (PCBs) and semivolatile organic compounds (SVOCs). Hydrologic, Incorporated's

mobile onsite laboratory analyzed the soil and groundwater samples for VOCs using USEPA

Method 8021. Twenty-five percent of the soil and groundwater samples submitted to Hydrologic

for VOC analysis were split and submitted to the National Environmental Testing, Inc. (NET),

laboratory in Bedford, Massachusetts, for confirmation analysis by USEPA Method 8240. NET

analyzed the samples for pesticides/PCBs, SVOCs, and Appendix IX metals by the USEPA

Methods 8080, 8270, and the 6010/7000 series, respectively.

Hydrologic used a Level II-equivalent Data Quality Objective (DQO) for onsite sample analysis.

NET used a Level III-equivalent DQO for 95% of the samples and a Level IV-equivalent DQO

for 5% of the samples.

E/A&H validated the analytical results of the three surface soil samples analyzed for

pesticides/PCBs and SVOCs. Validata Chemical Services, Inc., of Norcross, Georgia, validated

the analytical results of the remaining NET samples. Attachment 1 contains the validation

report, which indicates that the overall data quality of the analytical work is satisfactory.

**Hand-Auger Sampling Methods** 

E/A&H collected three surface soil samples for pesticide/PCB and SVOC analyses using a 3-inch

diameter, stainless-steel hand auger. The hand auger was advance from land surface to 1 foot

below land surface (bls) using a clockwise motion. The soil collected in the auger was placed

in a stainless-steel bowl for processing.

**Geoprobe Sampling Methods** 

Tri-State Testing Services, Inc., (Tri-State), of Memphis, Tennessee, collected the soil and

groundwater samples using a truck-mounted hydraulically driven, Geoprobe sampling system.

Soil samples were obtained by advancing a 1-inch diameter soil probe to the desired sampling

depth. The 48-inch sampler, situated at the end of the probe, contained a "push point" which

4-2

retracted when the sampling interval was reached. The sampler was then advanced through the sampling interval. The soil sample was then retrieved from the borehole and the collected material removed from the sampler. The samples were collected in a stainless-steel sampler lined with an acetate sleeve, which minimized sample handling and maintained sample integrity. Groundwater samples were obtained with a 1-inch diameter, stainless-steel groundwater sampler equipped with a 12-inch long, 0.010-inch slotted screen. The groundwater sampler was pushed to the selected sampling depth, retracted approximately 24 inches to open up the screen, and the void was allowed to fill. A piece of 0.25-inch diameter tubing was inserted into the screen assembly and attached to a transfer cap/bottle system. A vacuum was then placed on the transfer system, and the groundwater sample collected from the tubing after it was removed from the sampler.

# 4.1 Investigation of Soil and Groundwater

Nine sampling locations were proposed in the Assembly C Site Investigation Plans to define the nature and extent of contamination, if any, associated with the former sludge drying beds. Two sampling locations were placed in each cell of the sludge drying beds (Locations 1 through 8), and one location (Location 9) was placed north of the sludge drying beds in a presumed upgradient position. Figure 4-1 shows the sampling locations.

#### 4.2 Sampling Rationale and Methods

The Assembly C Site Investigation Plans (E/A&H, 1995) stated that the following four soil/and or groundwater samples would be collected from each Geoprobe location during the CSI:

- One surface soil sample (0 to 1 foot bls);
- One soil sample from the native soil just beneath the bottom layer of filter bed aggregate;
- One sample, either soil or groundwater, from the soil-water interface in the loess; and
- One groundwater sample from the top of the fluvial deposits.



To determine the intervals to be sampled, the first Geoprobe boring (Location 1) was sampled continuously to 14 feet bls. In this boring, native soil was encountered at 4 feet bls, the soil/water interface in the loess at 13 feet bls, and fluvial deposits groundwater at 44 feet bls. Native soil in subsequent borings was encountered at 5 feet bls, and the soil/water interface in the loess between 11 and 12 feet bls. No groundwater samples could be collected from the loess. Based on field observations, the following intervals were selected for CSI sampling.

- One surface soil sample (0 to 1 foot bls)
- One subsurface soil sample from the native soil just beneath the bottom layer of filter bed aggregate (5 to 6 feet bls)
- One subsurface soil sample from the soil/water interface in the loess (11 to 12 feet bls)
- One groundwater sample from the top of the fluvial deposits (44 feet bls)

Exceptions to the above sampling intervals occurred at Location 1, where soil samples were collected from the 4- to 5-foot and 13- to 14-foot intervals, based on field observations. No fluvial deposits groundwater samples were collected from Locations 3, 4, and 7 due to the insufficient volume of groundwater which entered the sampler. These deviations were recorded in the field logbook.

During the Geoprobe investigation, Quality Assurance/Quality Control (QA/QC) samples were collected to test the level of reproducibility attainable in the sampling and analytical processes. QA/QC samples were analyzed for VOCs as were the associated environmental samples. Soil and groundwater *duplicate* samples collected at a frequency of 25% during the investigation were submitted to the offsite laboratory (NET) for confirmation analysis. The analytical results of the duplicate samples are discussed in Section 6, Nature and Extent of Contamination.

Revision 2: September 25, 1996

After reviewing the results of the Geoprobe investigation, three surface soil samples were proposed in the Assembly C Confirmatory Sampling Investigation Report (E/A&H, Revision 0, November 1995) to provide data needed to prepare a PRE. The samples were collected at Locations 1, 2, and 5 (refer to Figure 4-1) in the sludge drying beds. These locations were chosen based on the analytical results of the Geoprobe investigation (where USEPA residential or industrial risk-based concentrations [RBCs] for arsenic and beryllium had been exceeded in surface soil samples) and sampling accessibility.

An E/A&H geologist logged and processed the soil samples for submittal to the analytical laboratories. Tri-State collected the soil samples with the Geoprobe rig using the 1-inch diameter soil probe lined with an acetate sleeve. To minimize the potential loss of volatiles, soil samples for VOC analyses were placed in bottles immediately after collection. Soil samples for metals analyses were homogenized in a stainless-steel bowl in accordance with Section 4.2.10 of the Region IV USEPA Standard Operating Procedures/Quality Assurance Manual and containerized as outlined in Section 4.4.4 of the *Comprehensive RFI Work Plan*. Groundwater samples from the fluvial deposits were collected directly from the sampler and containerized in prepreserved vials. All samples were placed immediately on ice for transport to the onsite and offsite laboratories.

The sampling protocol adhered to the approved Comprehensive RFI Work Plan (E/A&H, 1994) and the Assembly C Site Investigation Plans (E/A&H, 1995). Sample handling was minimized. When transferring material from the sampling device to containers, the operation was conducted expediently, in as clean an environment as possible. A new pair of disposable gloves was donned before collecting each soil and groundwater sample. Empty containers were kept packaged until used, at which time they were immediately chilled and isolated in coolers.

4-8

## 4.3 Sample Processing and Chain-of-Custody Procedure

All samples collected in the field were labeled with a 10-digit alphanumeric code that identifies the site, sample type, sample location, and interval. The first three digits identify the site location, and the fourth digit identifies the sample matrix (S = soil, G = groundwater). The next four digits identify the sampling location, and the last two digits are the deepest point of the sampling interval. For example, the sample label "027S000212" designates a SWMU 27 soil sample collected from Location 2 at a maximum depth of 12 feet.

Clean sample containers provided by the testing laboratory were shipped to E/A&H in sealed packages. Sample containers were labeled with the sample identification number, date, sampler's name, and requested analytical parameter, then placed in a cooler immediately following collection. Each sample was logged in the field logbook. Samples for offsite laboratory analysis were prepared for shipment by wrapping each container individually in bubble wrap, placing it in a resealable plastic bag, and packing it on ice inside a sturdy cooler. Cooler lids were secured with packing tape and sealed with signed custody seals. Packaged samples were then shipped overnight via FedEx priority service for next morning delivery. The offsite laboratory was notified the day of shipment of the number of samples submitted. All sample shipments were reported to have arrived at NET in good condition and at the appropriate temperature.

To ensure the integrity of the sample transfer process, a strict chain-of-custody procedure was implemented. The procedure, initiated in the field, was conducted through custody transfer to the analytical laboratory. A chain-of-custody form was completed for each batch of samples, itemizing sample numbers, containerization, preservatives, analyses requested, date and time of sampling, and FedEx shipping number. Custody transfers were recorded by signature, date, and time of relinquishment, and receipt of custody by the parties involved.

Confirmatory Sampling Investigation Report

Assembly C — SWMU 27, Northside Sewage Treatment Plant

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

4.4 **Grouting Procedure** 

Tri-State filled each Geoprobe boring with neat cement grout following sample collection.

4.5 **Decontamination Procedures** 

Tri-State decontaminated the downhole field equipment which did not come in contact with the

samples (i.e., rods, split-spoons) with a nonphosphate detergent and a deionized, organic-free

water rinse. All downhole equipment and sampling tools which could contact the collected

samples were decontaminated before and after each use in accordance with guidelines set forth

in the Assembly C Site Investigation Plans, which consisted of the following steps:

Wash with a hot soap and water mixture

Rinse with potable water

Rinse with deionized organic-free water

Rinse twice with pesticide-grade isopropyl alcohol

Rinse with deionized organic-free water

Wrap with aluminum foil or plastic

A new pair of disposable nitrile gloves was donned before handling decontaminated sampling

equipment. Surface and subsurface soil samples were collected directly from the hand auger or

the acetate sleeves within the stainless-steel sampler, and groundwater samples were collected

directly from the groundwater sampler. Therefore, no investigation-derived waste was generated

from these sampling activities.

4-10

#### 5.0 GEOLOGY AND HYDROGEOLOGY

#### 5.1 Regional Geology and Hydrogeology

The general hydrogeology of the Memphis area is discussed in detail in Section 2.11 and a conceptual model of the hydrogeology at the NSA is presented in Section 2.12 of the Comprehensive RFI Work Plan (E/A&H, 1994). Updated information is available in the Hydrogeology of Post-Wilcox Group Stratigraphic Units in the Area of the Naval Air Station Memphis, Near Millington, Tennessee (Kingsbury and Carmichael, 1995), provided in Attachment 2 of this document. On the basis of this updated information, the hydrogeology of NSA Memphis is re-summarized below.

The two stratigraphic units investigated during the RFIs at NSA Memphis are the loess/alluvial deposits of Pleistocene and Holocene age and the underlying fluvial deposits of Pleistocene to Pliocene age. The loess — eolian deposits consisting of silt, silty clay, clay, and minor amounts of sand — is the principal unit occurring at land surface throughout the NSA Memphis Northside. Alluvium, which is restricted to stream valleys, includes alluviated or reworked loess. The loess is typically 0 to 65 feet thick in the Memphis area; at NSA Memphis it ranges from 15 to 45 feet thick. Water-bearing zones are present in the loess primarily in the upper part of this unit; however, yields are low and water quality analyses performed during the water use survey portion of previous underground storage tank investigations indicate that loess groundwater does not meet many primary and secondary drinking water standards. Previous investigations at NSA Memphis have found depth to water in the loess varying between 5 and 15 feet bls and vertical hydraulic conductivities to range from 10-6 to 10-8 centimeters per second (cm/sec). Although the loess may be considered an aquitard on the basis of the relatively low hydraulic conductivities, this shallowest water-bearing zone is present within this interval. Groundwater flow in the loess is primarily downward, although locally some groundwater in the loess may discharge to nearby streams, drainage ditches, and other surface water bodies.

Confirmatory Sampling Investigation Report

Assembly C - SWMU 27, Northside Sewage Treatment Plant

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

The fluvial deposits underlie the loess in upland areas and consist of sand, gravel, and some

clay, with thin layers of ferruginous sandstone and conglomerate at the base. This unit ranges

from 0 to 100 feet thick in the Memphis area; on the Northside of NSA Memphis it ranges from

10 to 60 feet thick and represents the most significant component of the surficial aquifer. Many

shallow domestic wells in the Memphis rural areas are completed in the fluvial deposits.

Relative groundwater elevations between wells completed in the loess/alluvium and fluvial

deposits indicate semiconfined to confined conditions in the fluvial deposits. Typically a

downward vertical gradient exists between water in the loess and the fluvial deposits. Sediments

in the fluvial deposits generally coarsen with depth, and typically, the upper portion consists of

a mixture of very fine sand with varying degrees of silt and clay and becomes increasingly less

silty with depth, grading into a fine to medium sand near the middle of the unit. Grain sizes

typically coarsen below this interval, grading into a gravelly sand near the fluvial deposits basal

section.

The fluvial deposits are underlain by the Cockfield Formation, a part of the Jackson-upper

Claiborne confining unit, which is a heterogeneous formation consisting of very fine silty sand

interbedded with clay and silt lenses or clay with interbedded fine sand lenses. The Cockfield

Formation ranges in thickness from approximately 35 to 180 feet in the NSA Memphis area.

The more-permeable characteristics of the fluvial deposits, compared to the relatively

impermeable properties of the overlying loess/alluvium and the underlying Jackson-upper

Claiborne confining unit, result in the fluvial deposits being the preferential zone of groundwater

flow and the route for contaminant transport in NSA Memphis's subsurface.

5.2 Site-Specific Geology and Hydrogeology

The following sections provide site-specific geologic and hydrogeologic information obtained

from stratigraphic test borings, the Assembly A SWMU 60 RFI investigation, and the SWMU 27

Geoprobe investigation.

5-2

## **USGS Stratigraphic Test Boring**

In 1994, the U.S. Geological Survey drilled the 200-foot deep stratigraphic test hole 4 approximately 500 feet south of the main runway and about 2,100 feet northeast of SWMU 27. Attachment 2 of this document contains a copy of the previously referenced Kingsbury and Carmichael publication, which provides a geologic cross-section showing test hole 4 (USGS designation Sh:U-99). The test hole was originally to be advanced approximately 15 feet into the Cook Mountain Formation (the confining unit separating the Memphis aquifer from the overlying Cockfield Formation and shallower units). However, due to the unanticipated thinness of the Cockfield Formation, this borehole was advanced approximately 50 feet into the Memphis Sand. Cuttings from the test hole were visually logged by a field geologist during drilling, and geophysical logs were run following completion of the hole. Lithologies encountered in the test hole were as follows:

Loess: Approximately 40 feet of wind-blown silt deposits (loess)

consisting of silt and clay.

Fluvial Deposits: Approximately 30 feet of fluvial deposits consisting of sand

and gravel.

Cockfield Formation: Approximately 35 feet of alternating sand, clay, and some

lignite.

Cook Mountain Formation: The Cook Mountain, characterized as a brownish-gray to

olive-gray dense clay approximately 50 feet thick, is defined as the upper confining unit between the surficial

aquifers and the Memphis Sand aquifer.

#### SWMU 60 RFI

Shallow subsurface soil and groundwater information was collected while implementing the Assembly A RFI at SWMU 60, the Northside Landfill, approximately 500 feet east of SWMU 27. During the RFI, six soil borings were advanced and sampled, and 10 groundwater monitoring wells were installed, six in the loess and four in the lower fluvial deposits at various

5-3

locations just outside the landfill's perimeter. Attachment 2 contains a copy of the soil boring/monitoring well logs for the SWMU 60 RFI. The SWMU 60 RFI report is currently being prepared by E/A&H and will be submitted in final form later. Based on the information provided by the soil borings, silt and clay (loess) is present from ground surface to a depth of between 39 and 45 feet. Groundwater was first encountered in the loess at approximately 9 to 10 feet bls in all borings but was found to equilibrate within 3 or 4 feet of the surface in the completed wells, indicating confined groundwater conditions. A Shelby tube was collected from boring 60S0003 at the 20- to 22-foot depth interval. Geotechnical analysis of the sample indicated a vertical hydraulic conductivity of 1.7 x 10-7 cm/sec for the loess at this location. Grain-size analysis indicated a silty clay classification.

The top of the fluvial deposits contained silty sand and sand with alternating layers of sandy gravel and clay lenses. Gravel content typically increased with depth, as well as the sand grain-size distribution, which generally was fine in the upper part and coarse in the lower part. The base of the fluvial deposits/top of the Cockfield Formation was found to range between 75 and 96 feet bls. The top of the Cockfield was characterized by a grayish brown to pale brown clayey silt with a fine micaceous sand.

A specific capacity of 0.91 gallons per minute per foot of drawdown was calculated during a pump test of well 60MW04LF (approximately 800 feet southeast of SWMU 27), screened in the lower fluvial deposits. Using this specific capacity and an aquifer thickness of 55 feet at this location, a hydraulic conductivity of approximately 15 feet per day (ft/day) was determined. Horizontal groundwater velocities in the lower fluvial deposits have been estimated from SWMU 60's specific capacity data to range from 0.085 to 0.16 ft/day while the horizontal groundwater velocity in the loess at the Aviation Fire Fighting Training Facility (SWMU 5) approximately 3,000 feet southeast of SWMU 27, was estimated to be approximately 0.0014 ft/day (or 0.5 feet per year) (E/A&H, 1992).

Groundwater elevations were measured in SWMU 60 monitoring wells on March 31 and September 6, 1995. On these dates, the groundwater flow direction in the loess was south-southeast with a horizontal gradient ranging from 0.013 to 0.034 feet/foot. Groundwater in the lower part of the fluvial deposits flowed northwest with a relatively flat gradient ranging between 0.0016 to 0.003 feet/foot. Relative groundwater elevations between wells screened in the loess and fluvial deposits indicated a downward gradient from the loess to the fluvial deposits.

## SWMU 27 CSI

During the Geoprobe investigation, E/A&H collected soil samples continuously to 14 feet bls at Location 1 for visual observation and lithologic description. The field geologist described the lithology encountered during the Geoprobe investigation as brown silty clay and clay (loess). The water-bearing zone in the loess (11 to 13 feet bls) was visually classified as a silty clay. Groundwater was encountered at 44 feet in the upper part of the fluvial deposits.

# 6.0 NATURE AND EXTENT OF CONTAMINATION

This section provides the analytical results for surface soil (0 to 1 foot bls), subsurface soil (> 1 foot bls), and groundwater samples collected during the CSI. As outlined in Section 4, E/A&H collected surface and subsurface soil samples from three intervals at each of the nine sampling locations shown on Figure 4-1. Each of the samples were analyzed for VOCs and Appendix IX metals. Additional surface soil collected at three of the nine sampling locations was analyzed for SVOCs and pesticides/PCBs. Six groundwater samples were collected from the upper part of the fluvial deposits. Hydrologic's onsite laboratory analyzed the soil and groundwater samples for VOCs, and NET analyzed the soil samples for SVOCs, pesticides/PCBs, and Appendix IX Metals.

Detected concentrations of organic compounds and metals have been compared with media-specific guidance concentrations from the USEPA Region III RBC Table (July to December 1995) to evaluate the risk associated with exposure to soil and groundwater contaminants and to evaluate the transfer potential of contaminants from soil to groundwater. In addition, metals concentrations for the soil samples are compared with established reference concentrations (RCs) derived from background samples at NSA Memphis to determine if they represent naturally occurring concentrations. Background RC calculations were provided in the *Technical Memorandum* — *Assemblies A through D Background Reference Concentrations*, E/A&H, September 18, 1996). Detected concentrations of VOCs in groundwater are compared with RBCs for tap water (USEPA Region III RBC Table, July to December 1995) and maximum contaminant levels (MCLs) for drinking water (USEPA Drinking Water Regulations and Health Advisories, May 1995).

Specifically, surface soil sample results are compared with RCs, residential and industrial RBCs, and soil screening values (SSLs); whereas subsurface soil sample results are compared with RCs and SSLs only. Groundwater samples are compared with RBCs for tap water and MCLs for drinking water.

Revision 2: September 25, 1996

Section 6.1 briefly discusses the criteria used to determine the RCs (two times the mean

background concentration) for metals. Section 6.2 summarizes the detected contaminants in

surface and subsurface soil. Contaminants identified in surface soil are further evaluated in the

Preliminary Risk Evaluation (Section 7). Section 6.3 summarizes the detected contaminants in

groundwater. Soil and groundwater contaminants detected at SWMU 27 are summarized in

Section 6.4.

**6.1** Background Reference Concentrations

Background locations were established at five areas at NSA Memphis (shown on Figure 6-1) to

determine ambient soil and groundwater quality conditions. Background data for soil consist of

12 samples collected from five boring locations. The background RC for each metal was

calculated by doubling the mean concentration detected. Two RCs were established for soil —

one for surface soil (0 to 1 foot bls) and one for subsurface soil (> 1 foot bls). Tables 6-1

and 6-2 show the RCs for metals detected in surface and subsurface soil, respectively.

6.2 Soil Sample Analytical Results

The following sections summarize the results of soil samples collected during the CSI.

Appendix A contains the analytical data.

**6.2.1** Surface Soil Samples

E/A&H collected nine surface soil samples from the 0 to 1 foot bls. Each sample was analyzed

for VOCs and Appendix IX metals. Three of the samples were also analyzed for

pesticides/PCBs and SVOCs. Figure 4-1 shows the sampling locations, and Table 6-1

summarizes the detected contaminant concentrations.

6-2



Table 6-1
Detected Concentrations of VOCs, Pesticides, SVOCs, and Metals in Surface Soil
SWMU 27 — Northside Sewage Treatment Plant
(data in milligrams per kilogram)

|                                    |                          | (data in milligrams per kilogram) |                         |                          |                          |                           |                             |                                 |                                |
|------------------------------------|--------------------------|-----------------------------------|-------------------------|--------------------------|--------------------------|---------------------------|-----------------------------|---------------------------------|--------------------------------|
| Analyte                            | 1 (0 - 1')<br>027S000101 | 2 (0 - 1)<br>027S000201           | 3 (0 - 1)<br>027S000301 | 4 (0 - 1')<br>027S000401 | 5 (0 - 1')<br>027S000501 | RC•<br>0 - 1'             | SSL                         | RBC <sup>c</sup><br>Residential | RBC <sup>c</sup><br>Industrial |
|                                    |                          |                                   | Organ                   | c Compounds              |                          |                           |                             |                                 |                                |
| Isopropylbenzene/<br>Bromobenzene4 | ND•                      | ND                                | 0.0058                  | ND                       | ND                       |                           | _                           | -                               | -                              |
| Aldrin                             | ND                       | 0.0097 J                          | N/Aª                    | N/A                      | ND                       | _                         | 0.005                       | 0.038                           | 0.34                           |
| Heptachlor epoxide                 | 0.0032 J                 | 0.019                             | N/A                     | N/A                      | 0.006 J                  |                           | 0.03                        | 0.07                            | 0.63                           |
| Dieldrin                           | 0.2 D                    | 1.2 D                             | N/A                     | N/A                      | 0.71 D                   |                           | 0.001                       | 0.04                            | 0.36                           |
| Endrin                             | ND                       | 0.0081 J                          | N/A                     | N/A                      | 0.0045                   |                           | 0,4                         | 23                              | 610                            |
| 4,4'-DDD                           | ND                       | ND                                | N/A                     | N/A                      | 0.0026                   |                           | 0.7                         | 2.7                             | 24                             |
| 4,4'-DDT                           | 0.0071 J                 | 0.019 J                           | N/A                     | N/A                      | 0.014 J                  | **** <u></u> **           | 1                           | 1.9                             | 17                             |
| alpha-Chlordane                    | 0.019                    | 0.12 D                            | N/A                     | N/A                      | ND                       |                           | 2                           | 0.49                            | 4.4                            |
| gamma-Chlordane                    | 0.0081                   | ND                                | N/A                     | N/A                      | ND                       | -                         | 2                           | 0.49                            | 4.4                            |
| Technical chlordane                | 0.11                     | 0.67                              | N/A                     | N/A                      | ND                       | <del>-</del>              | 2                           | 0.49                            | 4.4                            |
| Naphthalene                        | ND                       | 0,25 J                            | N/A                     | N/A                      | ND                       |                           | 30                          | 3,100                           | 82,000                         |
| 2-Methylnaphthalene                | ND                       | 0.063 J                           | N/A                     | N/A                      | ND                       |                           | 304                         | 3,100                           | 82,000                         |
| Acenaphthylene                     | ND                       | 0.043 J                           | N/A                     | N/A                      | 0.045 J                  | -                         | 200×                        | 4,700*                          | 120,000*                       |
| Acenaphthene                       | ND                       | 0.3 J                             | N/A                     | N/A                      | ND                       | _                         | 200                         | 4,700                           | 120,000                        |
| Dibenzofuran                       | ND                       | 0.24 J                            | N/A                     | N/A                      | ND:                      | <del></del>               | 120                         | 310                             | 8,200                          |
| Fluorene                           | ND                       | 0.38 J                            | N/A                     | N/A                      | ND                       | _                         | 160                         | 3100                            | 82000                          |
| Phenanthrene                       | ND                       | 3                                 | N/A                     | N/A                      | 0.36 J                   |                           | 1,400                       | 2,3004                          | 61,0004                        |
| Anthracene                         | ND                       | 0.64                              | N/A                     | N/A                      | 0.0 <del>9</del> 4 J     | -                         | 4,300                       | 23,000                          | 610,000                        |
| Carbazole                          | ND                       | 0.6                               | N/A                     | N/A                      | 0.04 J                   |                           | 0.5                         | 32                              | 290                            |
| Fluoranthene                       | 0.079 J                  | 2.9                               | N/A                     | N/A                      | 0.63                     |                           | 980                         | 3,100                           | 82,000                         |
| Pyrene                             | 0.07 <del>9</del> J      | 2.4                               | N/A                     | N/A                      | 0.56                     |                           | 1,400                       | 2,300                           | 61,000                         |
| Benzo(a)anthracene                 | 0.041 J                  | 1.4                               | N/A                     | N/A                      | 0.32 J                   | _                         | 0.7                         | 0.88                            | 7.8                            |
| Chrysene                           | 0.05 J                   | 1.3                               | N/A                     | N/A                      | 0.31 J                   |                           | 1                           | 88                              | 780                            |
| Benzo(b)fluoranthene               | 0.05 J                   | 1.2                               | N/A                     | N/A                      | 0.33 J                   | _                         | 4                           | 0.88                            | 7.8                            |
| Benzo(k)fluoranthene               | 0.05 J                   | 0.89                              | N/A                     | N/A                      | 0.28 J                   |                           | 4                           | 8.8                             | 78                             |
| Benzo(a)pyrene                     | 0.051 J                  | 1.1                               | N/A                     | N/A                      | 0.29 J                   | <del></del>               | 4                           | 0.088                           | 0.78                           |
| Indeno(1,2,3-cd)pyrene             | ND                       | 0.52                              | N/A                     | N/A                      | 0.14 J                   | - 100 <u>- 1</u> 00       | 35                          | 0.88                            | 7.8                            |
| Dibenz(a,h)anthracene              | ND                       | 0.23 J                            | N/A                     | N/A                      | 0.043 J                  |                           | 11                          | 0.088                           | 0.78                           |
| Benzo(g,h,i)perylene               | 0.041 J                  | 0.53                              | N/A                     | N/A                      | 0.16 J                   | - 10 <del>  10</del>   10 | 1,400                       | 2,300                           | 61,000                         |
|                                    |                          |                                   |                         | Metals                   |                          |                           |                             |                                 |                                |
| Antimony                           | 19,1 J                   | 18.5 J                            | ND                      | ND                       | NĐ                       | ND                        | -                           | 31                              | 820                            |
| Arsenic                            | 33 J                     | 15.9 J                            | 4.9                     | ND                       | 9.4                      | 13.2                      | 15                          | 0.43                            | 3.8                            |
| Berium                             | 153 J                    | 109 J                             | 111                     | 225                      | 202                      | 191                       | 32                          | 5,500                           | 140,000                        |
| Beryllium                          | 1.2 J                    | 0.97 J                            | 0.83 J                  | 0.68 J                   | 0.45 J                   | 0.96                      | 180                         | 0.15                            | 1.3                            |
| Cadmium                            | 1,3 J                    | ND                                | 0.97 J                  | 1.6                      | 0.82 J                   | ND                        | 6                           | 39                              | 1,000                          |
| Chromium                           | 9 J                      | 5.5 J                             | 8.6                     | 17                       | 11.2                     | 26.4                      | 19                          | 390                             | 10,000                         |
| Cobalt                             | ND                       | ND                                | 3.2 J                   | 5.8 J                    | 8.3                      | 20.6                      |                             | 4,700                           | 120,000                        |
| Copper                             | 13.5 J                   | 14.3 J                            | 17.6                    | 38.4                     | 23.5                     | 27                        |                             | 3,100                           | 82,000                         |
| Lead                               | 40.4                     | 22.9                              | 40.9                    | 60.5                     | 43.7                     | 28.7                      | None*                       | None*                           | None*                          |
| Mercury                            | 1.6                      | 0.3                               | 1.2                     | 1.7                      | 0.75                     | 2.3                       | 3                           | 23                              | 610                            |
| Nickel                             | ND                       | ND                                | 9.1 J                   | 11 J                     | 18.7                     | ND                        | 21                          | 1,600                           | 41,000                         |
| Selenium                           | 0.48 J                   | ND                                | ND                      | ND                       | ND                       | ND                        | 99946999466<br><b>3</b>     | 390                             | 10,000                         |
| Silver                             | 6.6 J                    | ND                                | ND                      | 8.4 J                    | 2.3 J                    | ND                        |                             | 390                             | 10,000                         |
| Vanadium                           | 9.7 J                    | 12.7 J                            | 11.1 J                  | 17.7                     | 15.4                     | 49.6                      | 8, 08881 <u>9108</u> 81 M.S | 550                             | 14,000                         |
| Zinc                               | 178                      | 69.7                              | 155                     | 239                      | 138                      | 88.3                      | 42,000                      | 23,000                          | 610,000                        |
| Tin                                | 12.1 J                   | 5.5 J                             | ND                      | 22.1 J                   | ND                       | ND                        |                             | 47,000                          | 1,000,000                      |

Confirmatory Sampling Investigation Report

Assembly C — SWMU 27, Northside Sewage Treatment Plant

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

# Table 6-1 Detected Concentrations of VOCs, Pesticides, SVOCs, and Metals in Surface Soil SWMU 27 — Northside Sewage Treatment Plant (data in milligrams per kilogram)

| Analyte                            | 6 (0 - 1')<br>027S000601 | 7 (0 - 1')<br>027S000701 | 8 (0 - 1')<br>027S000801 | 9 (0 - 1')<br>027S000901 | RC•<br>0 - 1' | SSL         | RBC <sup>c</sup><br>Residential | RBC <sup>c</sup><br>Industrial |
|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------|-------------|---------------------------------|--------------------------------|
|                                    |                          |                          | Organi                   | c Compounds              |               |             |                                 |                                |
| Isopropylbenzene/<br>Bromobenzenes | ND                       | ND                       | ND                       | ND                       |               | -           |                                 |                                |
|                                    |                          |                          |                          | Metals                   |               |             |                                 |                                |
| Anumony                            | UN                       | ND                       | ND                       | ND                       | NIE           |             | 31                              | 820                            |
| Arsenic                            | 7.7                      | 4                        | 10.6                     | 11.2                     | 13.2          | 15          | 0.43                            | 3.8                            |
| Bartum                             | 120                      | 148                      | 110                      | 52.7                     | . 191         | 32          | 5,500                           | 140,000                        |
| Beryllium                          | 0.65 J                   | ND                       | 0.41 <b>J</b>            | 0.33 J                   | 0.96          | 180         | 0.15                            | 1.3                            |
| Cadmium                            | ND                       | 0.97                     | ND                       | 1.1 J                    | ND            | 6           | 39                              | 1,000                          |
| Chromium                           | 16.4                     | 6.7                      | 12.8                     | 9.7                      | 26.4          | 19          | 390                             | 10,000                         |
| Cobalt                             | 6.6 J                    | ND                       | 7.9 J                    | 5.4 J                    | 20.6          |             | 4,700                           | 120,000                        |
| Copper                             | 11                       | 38.3                     | 8.8                      | 11.3                     | 27            |             | 3,100                           | 82,000                         |
| Lead                               | 30.6                     | 277                      | 24.7                     | 10.2                     | 28.7          | None*       | None*                           | None*                          |
| Mercury                            | 0.25                     | 3. <i>1</i>              | 0.13                     | ND                       | 2.3           | 3           | 23                              | 610                            |
| Nickel                             | 14.9                     | ND                       | 14.8                     | 10.2                     | ND            | 21          | 1,600                           | 41,000                         |
| Selenium                           | ND                       | ND                       | ND                       | 0.5 J                    | ND            | 3           | 390                             | 10,000                         |
| Silver                             | ND                       | 15.8 J                   | ND                       | ND                       | ND            |             | 390                             | 10,000                         |
| Vanadium                           | 19.1                     | 2.8 J                    | 18.3                     | 26.1                     | 49.6          | <del></del> | 550                             | 14,000                         |
| Zinc                               | 86.8                     | 163                      | 49.1                     | 31.6                     | 88.3          | 42,000      | 23,000                          | 610,000                        |
| Tin                                | ND                       | ND                       | ND                       | ND                       | ND            |             | 47,000                          | 1,000,000                      |

# Notes:

- Reference concentration (2 x the mean background concentration). Background concentrations were established for the 0 to 1-foot and the greater than 1-foot intervals below land surface using analytical data from 12 soil samples collected from five background soil boring locations at various locations on the Northside and Southside of NSA Memphis (Technical Memorandum Assemblies A through D Background Reference Concentrations, E/A&H, September 18, 1996).
- b SSL = Soil Screening Level; RBC = Risk-Based Concentration. Values obtained from the USEPA Region III RBC Table, July to December 1995.
- RBC = Risk-Based Concentration; obtained from the USEPA Region III Risk-Based Concentration Table, July to December 1995.
- The onsite laboratory instrumentation could not distinguish between these two VOCs due to similar retention times for these compounds.
- ND = denotes analyte was not detected.
- No guidance concentration exists for this analyte.
- g J = denotes concentration is estimated.
- N/A = denotes sample was not analyzed for this parameter.
- D = indicates sample was diluted prior to analysis.
  - No RBCs exist for 2-methylnaphthalene; the RBCs for naphthalene were used as surrogates.
- No RBCs exist for acenaphthylene; the RBCs for acenaphthene were used as surrogates.
- No RBCs exist for phenanthrene and benzo(g,h,i)perylene; the RBCs for pyrene were used as surrogates.
- Although no there is no published SSL or RBC for lead, USEPA has published a recommended soil screening concentration of 400 milligrams per kilogram (mg/kg) for residential land use and 1,000 mg/kg for industrial land use (Office of Solid Waste and Emergency Response Directive 9355.4-12).

Bold indicates analyte exceeds the RC.

Italics indicates analyte exceeds the soil screening level.

Bold and Italics indicates analyte exceeds both the RC and the SSL.

LARGE PRINT indicates analyte exceeds the residential RBC.

LARGE PRINT AND BOLD indicates analyte exceeds both the RC and the residential RBC.

Table 6-2

Detected Concentrations of VOCs and Metals in Subsurface Soil

SWMU 27 — Northside Sewage Treatment Plant

(data in milligrams per kilogram)

1 (4 - 5') 1 (12 - 14') 2 (5 - 6') 2 (11 - 12') 3 (5 - 6') 3 (11 - 12') 4 (5 - 6') 4 (11 - 12') 5 (5 - 6') RC\*

Applyte 0275000105 0275000114 0275000206 0275000212 0275000312 0275000406 0275000412 0275000412 0275000506 > 1'

| Analyte                           | 027S000105      | 027S000114 | 027S000206 | 027S000212 | 027S000306 | 027S000312   | 027S000406 | 027S000412 | 027S000506 | > 1'  | SSL                                      |
|-----------------------------------|-----------------|------------|------------|------------|------------|--------------|------------|------------|------------|-------|------------------------------------------|
|                                   |                 |            |            |            | Orga       | nic Compound | S          |            |            |       |                                          |
| Isopropylbenzene/<br>Bromobenzene | ND <sup>4</sup> | ND         | ND         | ND         | ND         | ND           | ND         | ND         | ND         | •     | -                                        |
|                                   |                 |            |            |            |            | Metals       |            |            |            |       |                                          |
| Antimony                          | 20.4 J          | ND         | 18 J       | ND         | ND         | ND           | ND         | ND         | ND         | ND    |                                          |
| Arsenic                           | 11.9 J          | 6.4 J      | 13.2 J     | 5.3 J      | 6.3        | 10.6         | 10.3       | 10         | 5.6        | 20.4  | 15                                       |
| Barium                            | 160 J           | 72.9 J     | 191 J      | 73.8 J     | 197        | 131          | 163        | 100        | 121        | 289   | 32                                       |
| Beryllium                         | 0.42 J          | 0.34 J     | 0.54 J     | 0.33 J     | 0.61 J     | 0.46 J       | 0.46 J     | 0.41 J     | 0.34 J     | 1.02  | 180                                      |
| Cadmium                           | 2.6 J           | 2.2 3      | 2.4 J      | 1.3 J      | ND         | ND           | ND         | ND         | ND         | 6.8   | 6                                        |
| Chromium                          | 9.4 J           | 6.4 J      | 10.3 J     | 7.4 J      | 14.3       | 13.8         | 11.6       | 10.8 J     | 9.9        | 28.6  | 19                                       |
| Cobalt                            | 8.1 J           | 7.4 J      | 11.9 J     | 8 J        | 11.7 J     | 7.2 J        | 10 J       | 8.7 J      | 6.1 J      | 15.3  |                                          |
| Copper                            | 17.5 J          | 12.7 J     | 18 J       | 16.1 J     | 10         | 12.4         | 11.7       | 12.9       | 7.1        | 33.9  |                                          |
| Lead                              | 12.6            | 8.5        | 14.5       | 10.7       | 7.7        | 11.9         | 11.6       | 11.7       | 7          | 25.1  | Nones                                    |
| Mercury                           | ND              | ND         | ND         | ND         | ND         | ND           | ND         | ND         | ND         | 0.38  | 3                                        |
| Nickel                            | 20.8 J          | 15.1 J     | 26.3 J     | 16.5 J     | 22.7       | 24           | 28.1       | 20.1       | 14.9       | 59.8  | 21                                       |
| Selenium                          | ND              | ND         | ND         | ND         | ND         | ND           | ND         | ND         | ND         | ND    | 3                                        |
| Silver                            | ND              | ND         | ND         | ND         | ND         | ND           | ND         | ND         | ND         | ND    |                                          |
| Vanadium                          | 19.9 J          | 14.6 J     | 22.5 J     | 15.6 J     | 20.8       | 24.6         | 18.8       | 17.3       | 14.4       | 46.3  |                                          |
| Zinc                              | 54.2            | 39.9       | 60.8       | 51.i       | 47.1       | 57           | 54.5       | 53.1       | 39.5       | 111.8 | 42000                                    |
| Tin                               | ND              | 5.5 J      | 4.4 J      | ND         | ND         | ND           | ND         | ND         | ND         | ND    | ** 116 10 106 10601000000000000000000000 |

Table 6-2

Detected Concentrations of VOCs and Metals in Subsurface Soil

SWMU 27 — Northside Sewage Treatment Plant

(data in milligrams per kilogram)

| Analyte                           | 5 (11 - 12')<br>027S000512 | 6 (5 - 6')<br>027S000606 | 6 (11 -12')<br>027S000612 | 7 (5 - 6')<br>027S000706 | 7 (11 - 12')<br>027S000712 | 8 (5 - 6')<br>027S000806 | 8 (11 - 12')<br>027S000812 | 9 (5 - 6')<br>027S000906 | 9 (11 - 12')<br>027S000912 | RC* > 1' | SSL <sup>b</sup> |
|-----------------------------------|----------------------------|--------------------------|---------------------------|--------------------------|----------------------------|--------------------------|----------------------------|--------------------------|----------------------------|----------|------------------|
| 7 Annalyte                        | 27.5000512                 | 027500000                | 0275000012                | 0275000700               |                            | nic Compound             |                            | 0275000700               | 0275000712                 |          | - COL            |
| Isopropylbenzene/<br>Bromobenzene | ND                         | 0.0411                   | ND                        | ND                       | ND                         | ND                       | ND                         | ND                       | ND                         |          | _                |
|                                   |                            |                          |                           |                          |                            | Metals                   |                            |                          |                            |          |                  |
| Antimony                          | ND                         | ND                       | ND                        | ND                       | ND                         | ND                       | ND                         | ND                       | ND                         | ND       | _                |
| Arsenic                           | 5.1                        | 8.9                      | 5.1                       | 7                        | 8.7                        | 14.2                     | 9.2                        | 13.7                     | 7.9                        | 20.4     | 15               |
| Barium                            | 115                        | 294                      | 110                       | 167                      | 151                        | 138                      | 77.8                       | 134                      | 60.1                       | 289      | 32               |
| Beryllium                         | 0.4 J                      | 0.59 J                   | 0.39 J                    | 0.46 J                   | 0.38 J                     | 0.44 J                   | 0.3 J                      | 0.47 J                   | 0.28 J                     | 1.02     | 180              |
| Cadmium                           | ND                         | ND                       | ND                        | ND                       | ND                         | ND                       | 0.99 J                     | 1.9 J                    | ND                         | 6.8      | 6                |
| Chromium                          | 15                         | 16.7                     | 13.4                      | 15                       | 13.5                       | 10.2                     | 6.7 J                      | 10                       | 4.9 J                      | 28.6     | 19               |
| Cobalt                            | 5.1 J                      | 8.7 J                    | 4.2 J                     | 73                       | 7.6 J                      | 9.3 J                    | 6.5 J                      | 7.1 J                    | 5.7 J                      | 15.3     | · ·              |
| Copper                            | 7.9                        | 13.1                     | 8.6                       | 7.7                      | 7.4                        | 11.8                     | 12.9                       | 18.1                     | 13.2                       | 33.9     | <del></del>      |
| Lead                              | 7.8                        | 9,4                      | 6.1                       | 7.8                      | 10.6                       | 14.5                     | 9.4                        | 13                       | 9                          | 25.1     | Nones .          |
| Mercury                           | ND                         | ND                       | ND                        | ND                       | 0.11                       | ND                       | ND                         | ND                       | ND                         | 0.38     | 3                |
| Nickel                            | 14.9                       | 33.1                     | 14.4                      | 19.6                     | 19.4                       | 21.8                     | 23.2                       | 26.6                     | 17.5                       | 59.8     | 21               |
| Selenium                          | ND                         | ND                       | ND                        | ND                       | ND                         | ND                       | 0.53 J                     | ND                       | 0.53 J                     | ND       | 3                |
| Silver                            | ND                         | ND                       | ND                        | ND                       | ND                         | ND                       | ND                         | ND                       | 0.97 J                     | ND       |                  |
| Vanadium                          | 17.5                       | 30                       | 12.9                      | 23.5                     | 19.8                       | 17.2                     | 12.5 J                     | 18.9                     | 13.1                       | 46.3     | —                |
| Zinc                              | 45.9                       | 73.4                     | 55,5                      | 45.4                     | 58.5                       | 89.2 J                   | 40                         | 59                       | 38                         | 111.8    | 42000            |
| Tin                               | ND                         | ND                       | ND                        | ND                       | ND                         | ND                       | ND                         | ND                       | ND                         | ND       | <del>-</del>     |

#### Notes:

- RC = Reference concentration (2 x the mean background concentration). Background concentrations were established for the 0 to 1-foot interval and the greater than 1-foot intervals below land surface using analytical data from 12 soil samples collected from five background soil boring locations at various locations on the Northside and Southside of NSA Memphis (Technical Memorandum Assemblies A through D Background Reference Concentrations, E/A&H, September 18, 1996).
- SSL = Soil Screening Level; obtained from the USEPA Region III RBC Table, July to December, 1995.
- The onsite laboratory instrumentation could not distinguish between these two VOCs due to similar retention times for these compounds.
- d ND = denotes analyte was not detected.
- · = No guidance concentration exists for this analyte.
- t J = denotes concentration is estimated.
- Although no there is no published SSL for lead, USEPA has published a recommended soil screening concentration of 400 milligrams per kilogram (mg/kg) for residential land use and 1,000 mg/kg for industrial land use (Office of Solid Waste and Emergency Response Directive 9355.4-12).

Bold indicates analyte exceeds the RC.

Italics indicates analyte exceeds the SSL.

Bold and Italics indicates analyte exceeds both the RC and the SSL.

# **VOCs**

The only VOCs detected in surface soil were isopropylbenzene/bromobenzene at Location 3 (0.0058 milligrams per kilogram [mg/kg]). These two compounds could not be distinguished by the onsite laboratory instrumentation due to similar retention times. No RC, SSL, or RBC exists for either of these compounds. Figure 6-2 provides a plot of total VOC concentrations in surface soil, and Table 6-1 summarizes the detected concentrations.

# Pesticides/PCBs

Eight pesticides were detected in the three surface soil samples. Dieldrin was detected in all three surface soil samples at concentrations ranging from 0.2 mg/kg to 1.2 mg/kg, which exceeds the industrial RBC and the SSL. The June 2, 1995, Technical Memorandum Discussion of Dieldrin Risk Management Issues (E/A&H, 1995) provides the results of a background study for dieldrin concentrations at NSA Memphis. A copy of this technical memorandum is provided in Attachment 3. As outlined in the technical memorandum, dieldrin is ubiquitous to NSA Memphis due to its basewide aerial application during the 1950s and 1960s to control the spread of white-fringed beetles. The average background concentration of dieldrin in soil was 0.131 mg/kg, with a maximum detected concentration of 0.311 mg/kg. Risk estimates based on the background soil dieldrin concentrations at NSA Memphis did not exceed the 1E-4 Incremental Lifetime Excess Cancer Risk (ILCR) threshold established by the USEPA. As stated in the memorandum, "This finding indicates that dieldrin levels found at each SWMU do not necessitate remedial action in the absence of other significant carcinogenic risk contributors." In addition, because of the chemical properties of dieldrin and the physical properties of soil, it is not expected to leach in appreciable quantities (if at all) into underlying groundwater. Although the maximum detected dieldrin concentration at SWMU 27 (1.2 mg/kg) exceeds the average background concentration of 0.131 mg/kg, the risk ratio outlined in the PRE in Section 7 (3E-5 for residential carcinogens and 3.3E-6 for industrial carcinogens) still does not exceed the 1E-4 ILCR standard.



Aldrin was detected above the SSL, but did not exceed residential or industrial RBCs. No other detected pesticide exceeded RBCs or SSLs. No PCBs were detected in the surface soil samples. Figure 6-3 provides a plot of total pesticides concentrations in surface soil and indicates whether industrial and residential RBCs for individual pesticides are exceeded at each location. Table 6-1 lists each detected concentration.

#### **SVOCs**

Nineteen SVOCs were detected in the three surface soil samples. At Location 2, the benzo(a)pyrene concentration (1.1 mg/kg) exceeded the industrial RBC (0.78 mg/kg) but did not exceed the SSL (4 mg/kg). The benzo(a)pyrene concentration at Location 5 (0.29 mg/kg) exceeded the residential RBC (0.088 mg/kg) but not the SSL. The concentration of benzo(a)anthracene (1.4 mg/kg) exceeded both the residential RBC (0.88 mg/kg) and the SSL (0.7 mg/kg) at Location 2. Benzo(b)fluoranthene (1.2 mg/kg) and dibenz(a,h)anthracene (0.23 mg/kg) exceeded the residential RBCs (0.88 mg/kg and 0.088 mg/kg, respectively) but not the SSLs (4 mg/kg and 11 mg/kg, respectively) at Location 2. The chrysene concentration at Location 2 (1.3 mg/kg) exceeded the SSL (1 mg/kg) but not the residential RBC (88 mg/kg). Figure 6-4 provides a plot of total SVOC concentrations in surface soil and indicates whether residential and industrial RBCs for individual SVOCs are exceeded at each location. Table 6-1 lists each detected concentration.

# Metals

Sixteen metals were detected in the surface soil samples, most of which exceeded their background reference concentration (RC, or two times the mean background concentration) at NSA Memphis. Arsenic, detected at each sampling location, exceeded the RC (13.2 mg/kg), industrial RBC (3.8 mg/kg), and the SSL (13.2 mg/kg) at Locations 1 (33 mg/kg detected) and 2 (15.9 mg/kg). The arsenic concentration also exceeded the industrial RBC but not the RC or SSL at Locations 3, 5, 6, 7, 8, and 9. Beryllium was identified at concentrations above the residential RBC in most samples; however, the background RC of beryllium exceeds the residential RBC. No other metal exceeded its residential RBC.





The SSL for barium was exceeded in every sample; however, the background RC for barium was only exceeded at two sampling locations. The SSL and RC for mercury were exceeded at one location. Figure 6-5 provides a plot of metals concentrations in surface soil samples compared with their RCs and RBCs, and Table 6-1 summarizes the detected metals concentrations in surface soil.

# **6.2.2** Subsurface Soil Samples

E/A&H collected 18 subsurface soil samples from two intervals at each of the nine sampling locations. The samples were analyzed for VOCs and Appendix IX metals. Figure 4-1 shows the sampling locations, and Table 6-2 summarizes the detected contaminant concentrations.

#### **VOCs**

The only VOCs detected in subsurface soil samples were isopropylbenzene/bromobenzene at Location 6 (0.0411 mg/kg, 5- to 6-foot interval). These VOCs were detected by the onsite laboratory only. The laboratory instrumentation could not distinguish between the two VOCs because of similar retention times for these compounds. No RBC exists for either isopropylbenzene or bromobenzene.

# **Metals**

Sixteen metals were detected in the subsurface soil samples. Barium exceeded its SSL (32 mg/kg) and its RC (289 mg/kg) at Location 6 (294 mg/kg) only. No other subsurface soil sample exceeded both the RC and SSL. Antimony was detected at Location 1 (20.4 mg/kg; 4 to 5 feet bls) and Location 2 (18 mg/kg; 5 to 6 feet bls) at concentrations exceeding the RC (not detected). No SSL exists for antimony. Tin was detected at Location 1 (5.5 mg/kg; 12 to 14 feet bls) and Location 2 (4.4 mg/kg; 5 to 6 feet bls) at concentrations exceeding the RC (not detected). No SSL exists for tin.



Revision 2: September 25, 1996

#### 6.3 Groundwater Results

No VOCs were identified in groundwater by the onsite laboratory. The only VOCs identified in groundwater by the offsite laboratory were in duplicate samples submitted for confirmation analysis. At Location 5, 7 micrograms per liter ( $\mu$ g/L) acetone and 1  $\mu$ g/L toluene were identified in groundwater from the upper fluvial deposits. At Location 9, 18  $\mu$ g/L acetone and 2  $\mu$ g/L carbon disulfide were detected. Acetone is a common laboratory artifact. No RBCs for tap water or MCLs for drinking water were exceeded by VOCs detected in groundwater. Figure 6-6 provides a plot of VOCs in groundwater compared with their RBCs and MCLs, and Table 6-3 summarizes the detected VOCs in groundwater.

# 6.4 Summary of Nature and Extent

Analytical results indicate minimal contamination, if any, by VOCs in soil and groundwater. No VOC concentration in surface soil exceeded its RBC or SSL. No VOC concentration in subsurface soil exceeded its RBC or SSL. No VOC concentration in groundwater exceeded either the RBC for tap water or the MCL for drinking water.

Eight pesticides were detected in the three surface soil samples. The dieldrin concentration in two surface soil samples exceeded the industrial RBC and the SSL and exceeded the residential RBC and the SSL in the third sample. However, dieldrin is ubiquitous to NSA Memphis due to its basewide aerial application during the 1950s and 1960s. Aldrin was detected above the SSL in one surface soil sample, but it did not exceed its residential RBC.

Nineteen SVOCs were detected in the three surface soil samples. Benzo(a)pyrene exceeded its industrial RBC at one location and its residential RBC at a second location. Benzo(a)anthracene exceeded both the residential RBC and the SSL at one location. Benzo(b)fluoranthene and dibenz(a,h)anthracene exceeded the residential RBC at one location. Chrysene exceeded its SSL at one location.



Table 6-3

Detected Concentrations of VOCs in Groundwater
SWMU 27 — Northside Sewage Treatment Plant
(data in micrograms per liter)

# Sample Location/ID

| Analyte          | 5 (44' to 45')<br>027H000545 | 9 (43' to 44')<br>027H000944 | RBC•<br>Tap Water | MCL <sup>b</sup> Drinking Water |
|------------------|------------------------------|------------------------------|-------------------|---------------------------------|
| Acetone          | 7 Jc                         | 18                           | 3,700             | _4                              |
| Carbon Disulfide | ND•                          | 2 J                          | 1,000             | <del></del>                     |
| Toluene          | 1 J                          | ND                           | 750               | 1,000                           |

#### Notes:

- RBC = Risk-Based Concentration; obtained from the USEPA Region III Risk-Based Concentrations Table, July to December 1995.
- b MCL = Maximum Contaminant Level for Drinking Water; obtained from the USEPA Drinking Water Regulations and Health Advisories, May 1995.
- c J = Estimated concentration
- d No guidance concentration exists for this analyte.
- ND = Analyte was not detected.

Sixteen metals were detected in the surface soil samples, most of which exceeded their background RC. Arsenic exceeded the RC, the SSL, and the industrial RBC at two locations. Beryllium was identified at concentrations above the residential RBC in most samples; however, the background RC of beryllium exceeds the residential RBC. No other metal exceeded its residential RBC. The background RC and the SSL were exceeded at two sampling locations for barium and at one location for mercury.

Sixteen metals were detected in the subsurface soil samples. Barium exceeded the SSL and the RC in one sample. Antimony and tin, which do not have SSLs, exceeded their RCs in two subsurface soil samples each.

#### **Contaminant Transfer from Soil to Groundwater**

Tables 6-1 and 6-2 provide SSL values for transfer from surface and subsurface soil to groundwater. Figure 6-7 illustrates that both RCs and SSLs were exceeded by one or more contaminants at sample locations 1, 2, 4, 5, 6, and 7.



Confirmatory Sampling Investigation Report

Assembly C — SWMU 27, Northside Sewage Treatment Plant

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

7.0 PRELIMINARY RISK EVALUATION

In accordance with Guidance on Preliminary Risk Evaluations for the Purpose of Reaching a

Finding of Suitability to Lease (USEPA Region IV Memorandum, November 1994), a PRE was

conducted for SWMU 27 to finalize the RCRA closure of the SWMU.

Nine surface soil samples were collected; two sampling locations were in each of the four cells

comprising the sludge drying beds and one location north of the sludge drying beds in a

presumed upgradient location. Each of the samples were analyzed for VOCs (USEPA

Method 8021 by the onsite laboratory) and Appendix IX metals (USEPA Method 6010/7000

series). Additional surface soil collected at three of the nine sampling locations was analyzed

for SVOCs (USEPA Method 8270) and pesticides/PCBs (USEPA Method 8080).

A PRE is conducted by constructing a table for carcinogenic and systemic (noncarcinogenic)

compounds. The maximum concentration for each detected chemical and its corresponding

RBC concentration is entered into the table to calculate cumulative human health risk. Soil data

used in the calculations are exclusively from samples collected across the surface soil interval

(0 to 1 foot bls).

Proportionate risk is calculated for each detected site chemical by comparing its maximum

reported concentration with the corresponding RBC value. Risk and hazard for residential and

commercial scenarios were calculated separately. RBC values were calculated by USEPA based

on a risk threshold of 10-6 for carcinogens or a hazard quotient threshold of 1.0 for

noncarcinogens. Therefore, a risk ratio is calculated for each contaminant by one of the

following two equations:

7-1

Confirmatory Sampling Investigation Report

Assembly C — SWMU 27, Northside Sewage Treatment Plant

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

Carcinogenic Risk Ratio:  $RR = \underline{media\ concentration} \times TR$ 

screening value

Noncarcinogenic Risk Ratio:  $RR = \underline{media\ concentration} \times THQ$ 

screening value

where:

RR = the risk ratio

Media Concentration = the maximum concentration of a site chemical Screening Value = the RBC value for that particular chemical

TR = target risk used by USEPA to calculate RBCs for

carcinogens (10-6)

THQ = target hazard quotient used by USEPA to calculate RBCs

for noncarcinogens (1.0)

Tables 7-1 and 7-2 summarize PRE results for SWMU 27 for carcinogens and noncarcinogens, respectively. The risk ratios for each chemical are summed separately for both residential and commercial scenarios to determine the overall site risk. Cumulative risk (for carcinogens) and cumulative hazard index (HI) (for noncarcinogens) are calculated separately, and the cumulative risk and HI are each compared to the corresponding cumulative threshold in accordance with the USEPA Region IV Memorandum, November 1994.

If the carcinogenic ILCR is greater than 10-4 (the cumulative risk threshold) or the noncarcinogenic HI is greater than 1 (the cumulative HI threshold), the site may require additional investigation for the corresponding land use scenario (USEPA Region IV Memorandum, November 1994). If neither threshold is exceeded, the property is considered suitable to lease for the specified land use scenario.

Table 7-1
Preliminary Risk Evaluation for SWMU 27
Residential and Commercial Carcinogens
NSA Memphis RFI

|                        | Reference     |         | Residential RBC |         | Commercial RBC |         |
|------------------------|---------------|---------|-----------------|---------|----------------|---------|
|                        | Concentration | Maximum | Carcinogen      | Risk    | Carcinogen     | Risk    |
| Parameter              | (mg/kg)       | (mg/kg) | (mg/kg)         | Ratio   | (mg/kg)        | Ratio   |
| Acenaphthene           |               | 0.3     |                 |         |                |         |
| Acenaphthylene         |               | 0.045   |                 |         |                |         |
| Aldrin                 |               | 0.0097  |                 |         |                |         |
| Anthracene             |               | 0.094   |                 |         |                |         |
| Antimony               | ND            | 19.1    |                 |         |                |         |
| Arsenic                | 13.1          | 33      | 0.43            | 7.7E-05 | 3.8            | 8.7E-06 |
| Barium                 | 19.1          | 225     |                 |         |                |         |
| Benzo(a)anthracene     |               | 0.32    | 0.88            | 3.6E-07 | 7.8            | 4.1E-08 |
| Benzo(a)pyrene         |               | 0.29    | 0.088           | 3.3E-06 | 0.78           | 3.7E-07 |
| Benzo(b)anthracene     |               | 0.33    | 0.88            | 3.8E-07 | 7.8            | 4.2E-08 |
| Benzo(g,h,i)perylene   |               | 0.16    |                 |         |                |         |
| Benzo(k)fluoranthene   |               | 0.28    | 8.8             | 3.2E-08 | 78             | 3.6E-09 |
| Beryllium              | 0.96          | 1.2     | 0.15            | 8.0E-06 | 1.3            | 9.2E-07 |
| Cadmium                | ND            | 1.6     |                 |         |                |         |
| Carbazole              |               | 0.04    | 32              | 1.3E-09 | 290            | 1.4E-10 |
| Chromium               | 26.4          | 17      |                 |         |                |         |
| Chrysene               |               | 0.31    | 88              | 3.5E-09 | 780            | 4.0E-10 |
| Cobalt                 | 15            | 8       |                 |         | •              |         |
| Copper                 | 23.6          | 38.4    |                 |         |                |         |
| 4,4'-DDD               |               | 0.0026  | 2.7             | 9.6E-10 | 24             | 1.1E-10 |
| 4,4'-DDT               |               | 0.019   | 1.9             | 1.0E-08 | 17             | 1.1E-09 |
| Dibenzo(a,h)anthracene |               | 0.23    | 0.088           | 2.6E-06 | 0.78           | 2.9E-07 |
| Dibenzofuran           |               | 0.24    |                 |         |                |         |
| Dieldrin               |               | 1.2     | 0.04            | 3.0E-05 | 0.36           | 3.3E-06 |
| Endrin                 |               | 0.0081  |                 |         |                |         |
| Fluoranthene           |               | 0.63    |                 |         |                |         |
| Fluorene               |               | 0.24    |                 |         |                |         |
| Heptachlor epoxide     |               | 0.019   | 0.07            | 2.7E-07 | 0.63           | 3.0E-08 |
| Indeno(1,2,3-cd)pyrene |               | 0.14    | 0.88            | 1.6E-07 | 7.8            | 1.8E-08 |
| Lead                   | 28.7          | 277     | 400             |         | 1000           |         |
| 2-Methylnaphthalene    |               | 0.063   |                 |         |                |         |
| Mercury                | 1.1           | 3.1     |                 |         |                |         |
| Naphthaiene            |               | 0.25    |                 |         |                |         |
| Nickel                 | 1.1           | 18.7    |                 |         |                |         |
| Phenanthrene           |               | 0.36    |                 |         |                |         |
| Ругеве                 |               | 0.56    |                 |         |                |         |
| Selenium               | ND            | 0.5     |                 |         |                |         |
| Silver                 | ND            | 15.8    |                 |         |                |         |
| Technical chlordane    |               | 0.67    | 4.4             | 1.5E-07 | 0.49           | 1.4E-06 |
| Tio .                  |               | 22.1    | 4.4             |         | 0.47           |         |
|                        | 49.6          | 26.1    |                 |         |                |         |
| Vanadium               |               |         |                 |         |                |         |
| Vanadium<br>Zinc       | 88.3          | 239     |                 |         |                |         |

NOTES:

ILCR Incremental excess lifetime cancer risk

HI Hazard index

Blank spaces Indicates not applicable

ND Not detected

- All concentrations are in parts per million (mg/kg).
- The maximum concentration reported for each consaminant was used to develop the table above.
- Soil sample data were from the surface (0-1') interval only.
- Screening values (RBCs) are from the July to December 1995
  Risk-Based Concentration (RBC) Table (October 20, 1995 USEPA
  Region III RBC memo).
- The maximum lead (Pb) concentration reported at SWMU 27 was 277 mg/kg. This is less than the 400 mg/kg residential soil screening level for total lead (USEPA OSWER Directive 9355.4-12).
   The RBC for naphthalene was used as a surrogate for acenaphthalene,
- which does not have an RBC.

  The RBC for pyrene was used as a surrogate for phenanthrene and benzo(g, h, i)perylene, which do not have RBCs.
- The technical chlordane concentration was used rather than the individual isomer concentrations to provide a conservative estimate.
- Metal was excluded from the risk ratio because the maximum reported concentration is less than the corresponding reference concentration.

Table 7-2 Preliminary Risk Evaluation for SWMU 27 Residential and Commercial Noncarcinogens NSA Memphis RFI

| NSA Memphis RFI                        | D-4           |         | D-1111 DBC      |          | C LDDC         |          |
|----------------------------------------|---------------|---------|-----------------|----------|----------------|----------|
|                                        | Reference     |         | Residential RBC |          | Commercial RBC | Hazard   |
| <b>.</b>                               | Concentration | Maximum | Noncarcinogen   | Hazard   | Noncarcinogen  |          |
| Parameter                              | (mg/kg)       | (mg/kg) | (mg/kg)         | Ratio    | (mg/kg)        | Ratio    |
| Acenaphthene                           |               | 0.3     | 4700            | 6.38E-05 | 120000         | 2.50E-06 |
| Acenaphthylene                         |               | 0.045   | 3100            | 1.45E-05 | 82000          | 5.49E-07 |
| Aldrin                                 |               | 0.0097  | 0.038           | 0.2553   | 0.34           | 0.029    |
| Anthracene                             |               | 0.094   | 23000           | 4.09E-06 | 610000         | 1.54E-07 |
| Antimony                               | ND            | 19.1    | 31              | 0.6161   | 820            | 0.02     |
| Arsenic                                | 13.1          | 33      | 23              | 1.4348   | 610            | 0.05     |
| Barium                                 | 19.1          | 225     | 5500            | 0.0409   | 140000         | 0.001    |
| Benzo(a)anthracene                     |               | 0.32    |                 |          |                |          |
| Benzo(a)pyrene                         |               | 0.29    |                 |          |                |          |
| Benzo(b)anthracene                     |               | 0.33    |                 |          |                |          |
| Benzo(g,h,i)perylene                   |               | 0.16    | 2300            | 6.96E-05 | 61000          | 2.62E-0  |
| Benzo(k)fluoranthene                   |               | 0.28    |                 |          |                |          |
| Beryllium                              | 0.96          | 1.2     |                 |          |                |          |
| Cadmium                                | ND            | 1.6     | 39              | 0.0410   | 1000           | 0.001    |
| Carbazole                              |               | 0.04    |                 |          |                |          |
| Chromium                               | 26.4          | 17      | 390             |          | 10000          |          |
| Chrysene                               | 20.1          | 0.31    | 3,0             |          |                |          |
| Cobalt                                 | 15            | 8       | 4700            |          | 120000         |          |
| Copper                                 | 23.6          | 38.4    | 3100            | 0.0124   | 82000          | 0.0004   |
| 4,4'-DDD                               | 2.0           | 0.0026  | 3100            | 0.0124   | 02000          | 0.0001   |
| 4,4'-DDT                               |               | 0.019   |                 |          |                |          |
| Dibenzo(a,h)anthracene                 |               | 0.23    |                 |          |                |          |
| Dibenzo(u,n)anunracene<br>Dibenzofuran |               | 0.24    | 310             | 0.0008   | 8200           | 2.93E-0  |
| Dieldrin                               |               | 1.2     | 310             | 0.0008   | 6200           | 2.936-0  |
| Endrin                                 |               | 0.0081  | 23              | 0.00035  | 610            | 1.33E-0  |
| Fluoranthene                           |               | 0.0081  | 23<br>3100      |          | 82000          | 7.68E-0  |
|                                        |               |         |                 | 0.00020  |                |          |
| Fluorene                               |               | 0.24    | 3100            | 0.00008  | 82000          | 2.93E-0  |
| Heptachlor epoxide                     |               | 0.019   |                 |          |                |          |
| Indeno(1,2,3-cd)pyrene                 | 20.0          | 0.14    |                 |          |                |          |
| Lead                                   | 28.7          | 277     |                 |          |                |          |
| 2-Methylnaphthalene                    |               | 0.063   | 3100            | 2.03E-05 | 82000          | 7.68E-0  |
| Mercury                                | 1.1           | 3.1     | 23              | 0.13     | 610            | 0.005    |
| Naphthalene                            |               | 0.25    | 3100            | 0.0001   | 82000          | 3.05E-0  |
| Nickel                                 | 1.1           | 18.7    | 1600            | 0.0117   | 41000          | 0.0004   |
| Phenanthrene                           |               | 0.36    | 2300            | 0.00016  | 61000          | 5.90E-0  |
| Pyrene                                 |               | 0.56    | 2300            | 0.00024  | 61000          | 9.18E-0  |
| Selenium                               | ND            | 0.5     | 390             | 0.0013   | 10000          | 5.00E-0  |
| Silver                                 | ND            | 15.8    | 390             | 0.0405   | 10000          | 0.001    |
| Technical chlordane                    |               | 0.67    |                 |          |                |          |
| Tin                                    |               | 22.1    | 47000           | 0.0005   | 1000000        | 0.000    |
| Vanadium                               | 49.6          | 26.1    | 550             |          | 14000          |          |
| Zinc                                   | 88.3          | 239     | 23000           | 0.0104   | 610000         | 0.00039  |
|                                        |               | н       | SUM             | 3        | SUM            | 0.12     |

#### NOTES:

ILCR Incremental excess lifetime cancer risk

HI Hazard index

Blank spaces Indicates not applicable

ND Not detected

- All concentrations are in parts per million (mg/kg).
- The maximum concentration reported for each contaminant was used to develop the table above.
- Soil sample data were from the surface (0-1') interval only.
- Screening values (RBCs) are from the July to December 1995
   Risk-Based Concentration (RBC) Table (October 20, 1995 USEPA
   Region III RBC memo).
- The maximum lead (Pb) concentration reported at SWMU 27 was 277 mg/kg. This is less than the 400 mg/kg residential soil screening level for total lead (USEPA OSWER Directive 9355.4-12).
  - The RBC for naphthalene was used as a surrogate for acenaphthalene, which does not have an RBC.
- The RBC for pyrene was used as a surrogate for phenanthrene and benzo(g,h,i)perylene, which do not have RBCs.
- The technical chlordane concentration was used rather than the individual isomer concentrations to provide a conservative estimate.
- Metal was excluded from the risk ratio because the maximum reported concentration is less than the corresponding reference concentration.

This PRE does not evaluate the potential exposure that might be experienced by construction workers should site structures be excavated in the future. This would require an acute or subchronic assessment of subsurface soil data. For the site worker scenario, USEPA recommends an exposure duration of 25 years — a chronic exposure scenario. Exposure durations less than seven years, as would be assumed for a construction worker scenario, are considered acute or subchronic. Assuming a construction worker is exposed to subsurface soil for three years, cumulative risk and hazard estimates would be approximately one order of magnitude less than those presented in this PRE.

USEPA used chronic-based toxicological information when calculating RBCs, or USEPA makes conservative adjustments to reflect chronic exposure. In addition to the effect the exposure duration differences would have on a construction worker's cumulative risk and hazard estimates, toxicological information used by USEPA to calculate RBCs would be adjusted to reflect acute or subchronic toxicological endpoints rather than the chronic endpoints typically used. Acute and subchronic thresholds are based on lower exposure durations than chronic thresholds, and higher concentrations are generally necessary to elicit observable toxic effects. Higher thresholds for toxic effects result in less conservative toxicological information, which would be used to adjust RBCs for either acute or subchronic exposure. Because a construction worker would be exposed under either acute or subchronic conditions, and RBCs based on chronic exposure are generally more conservative, the commercial site worker scenario presented in this PRE would be a more conservative scenario than that for a construction worker.

The maximum concentrations reported in SWMU 27 soil were generally from 0 to 1 foot bls, and exposure to maximum reported soil concentrations would occur within that interval. Therefore, the cumulative risk and hazard estimates presented in this PRE are conservative for most reported chemicals relative to subsurface soil.

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

According to the Base Reuse and Development Plan (RKG Associates Inc., 1995), SWMU 27,

the site of a former sewage treatment plant, will likely be developed as a commercial property.

Surface soil samples were collected from the former sewage sludge drying beds, which would

most likely be sinks for contaminants. Due to the nature of this proposed use, a commercial

setting can be assumed to evaluate risk. With respect to the commercial scenario, the resulting

ILCR and HI were below the established criteria of 104 and 1, respectively.

estimated for the residential scenario was approximately equal to the 10<sup>-4</sup> ILCR threshold, and

the HI of 3 for the residential scenario exceeded the established threshold of 1.

**Conclusions and Recommendations** 

Based on the information gathered during this investigation, the following conclusions and

recommendations have been reached:

SWMU 27 will likely be developed for commercial land use.

Forty-three SVOCs, pesticides, and metals were detected in surface soil samples.

of benzo(a)pyrene, beryllium, Maximum reported concentrations arsenic,

dibenzo(a,h)anthracene, and dieldrin exceeded residential soil RBCs, and concentrations

reported for arsenic and dieldrin exceeded the corresponding commercial (industrial)

RBCs.

Based on a PRE performed on data from samples collected from the 0 to 1-foot bls

interval:

Carcinogens — The commercial ILCR did not exceed the 10-4 threshold,

indicating suitability for lease with no further action for commercial land use.

7-6

- Carcinogens The residential ILCR was estimated to be approximately equal to the 10-4 threshold, and further discussion and/or investigation may be warranted to determine the suitability for lease for residential land use.
- Noncarcinogens The commercial HI did not exceed 1, indicating suitability
   for lease with no further action for commercial land use.
- Noncarcinogens The residential HI of 3 exceeded the cumulative threshold of 1, and further discussion and/or investigation may be warranted to determine the suitability for lease for a residential scenario.

Confirmatory Sampling Investigation Report Assembly C — SWMU 27, Northside Sewage Treatment Plant

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

#### 8.0 CONCLUSIONS AND RECOMMENDATIONS

During the CSI at SWMU 27, surface and subsurface soil samples were collected from nine sampling locations in the former sludge drying beds. In addition, groundwater samples were collected from the upper fluvial deposits at six of the nine sampling locations. The soil and groundwater samples were analyzed for VOCs by Hydrologic's onsite laboratory. NET's Bedford, Massachusetts, laboratory analyzed nine soil samples for Appendix IX metals and three soil samples for SVOCs and pesticides/PCBs. A PRE was developed using the data from the surface soil samples. Based on the CSI and the PRE, the following conclusions and recommendations have been reached:

- The only VOCs identified in surface and subsurface soil were isopropylbenzene and bromobenzene at Locations 3 and 6. No RBC exists for either of these compounds, which could not be distinguished by the onsite laboratory instrumentation due to similar retention times.
- No VOCs were identified in groundwater by the onsite laboratory. Three groundwater samples split and submitted to the offsite laboratory for confirmation analysis contained low concentrations of acetone, toluene, and carbon disulfide in one or more samples. Acetone is a common laboratory artifact. No RBCs for tap water or MCLs levels for drinking water were exceeded by VOCs detected in groundwater.
- Eight pesticides were detected in the three surface soil samples. The dieldrin concentration exceeded the industrial RBC and the SSL in two samples, and the residential RBC and the SSL in the third sample. However, dieldrin is ubiquitous to NSA Memphis due to its basewide aerial application during the 1950s and 1960s. Aldrin was detected above the SSL, but did not exceed its residential RBC.

Revision 2: September 25, 1996

Nineteen SVOCs were detected in the three surface soil samples. Benzo(a)pyrene exceeded the industrial RBC at one location and the residential RBC at a second location. Benzo(a)anthracene exceeded both the residential RBC and the SSL at one location. Benzo(b)fluoranthene and dibenz(a,h)anthracene exceeded the residential RBC at one location, and chrysene exceeded the SSL at one location.

- Sixteen metals were detected in the surface soil samples, most of which exceeded their background RC at NSA Memphis. Arsenic exceeded its RC, industrial RBC, and SSL at two locations. Beryllium was identified at concentrations above the residential RBC in most samples; however, the background RC of beryllium exceeds the residential RBC. No other metal exceeded its residential RBC. The SSL and the background RC were exceeded for barium at two sampling locations and for mercury at one location.
- Sixteen metals were detected in the subsurface soil samples. Barium exceeded the SSL
  and the RC in one sample. Antimony and tin, which do not have SSLs, exceeded their
  RC in two subsurface soil samples each.
- The PRE results indicate the property is suitable to lease for commercial land use. Based
  on the results of the first phase and the anticipated commercial land use of the property,
  no further action is recommended for SWMU 27.

# 9.0 REFERENCES

- ERC Environmental and Energy Services Company/EDGe (April 1990). Visual Site Inspection Report, NAS Memphis, Millington, TN. ERC/EDGe: Nashville, Tennessee.
- EnSafe/Allen and Hoshall (September 18, 1996). Technical Memorandum Assemblies A through D Background Reference Concentrations. E/A&H: Memphis, Tennessee.
- EnSafe/Allen and Hoshall (1996). Assembly C Confirmatory Sampling Investigation Report,

  Naval Support Activity Memphis. Revision 1 (May 24, 1996). E/A&H:

  Memphis, Tennessee.
- EnSafe/Allen and Hoshall (1995). Assembly C Confirmatory Sampling Investigation Report,

  Naval Support Activity Memphis. Revision 0 (November 1, 1995). E/A&H:

  Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1995). Assembly C Site Investigation Plans, Naval Air Station Memphis. E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1994). Comprehensive RFI Work Plan for Naval Air Station Memphis. E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (September 1992). UST Investigation, AFFTF USTs for Naval Air Station Memphis. E/A&H: Memphis, Tennessee.
- Kingsbury, James A. and John K. Carmichael (1995). Hydrogeology of Post-Wilcox Group Stratigraphic Units in the Area of the Naval Air Station Memphis, Near Millington, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 95-4011, one sheet.

- United States Environmental Protection Agency (July 14, 1994). Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. USEPA Office of Solid Waste Emergency Response (OSWER) Directive 9355.4-12.
- United States Environmental Protection Agency (1991). Standard Operating Procedures and Quality Assurance Manual. USEPA Region IV: Atlanta, Georgia.
- United States Geological Survey (1995). Oral and written communication with Mr. Jack Carmichael. USGS: Nashville, Tennessee.
- United States Environmental Protection Agency (July 14, 1994). Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. Office of Solid Waste Emergency Response (OSWER) Directive 9355.4-12.

Appendix A

**Analytical Data** 

FORMAT: XXXX \ 1 2 3 4 5 6 7 8 9 0

XXXX \ OPTIONAL project prefix
1 2 3 SITE where sample collected

4 - MATRIX / QC code

5 6 7 8 · SAMPLING LOCATION 9 0 · DEPTH, INTERVAL, SERIAL #

All spaces MUST be filled and no extra characters included. Use zeroes as space-fillers. Indicate MS/MSDs on COCs.

#### MATRIX/QC CODES:

S - soil (surface, borings, and trenches)

C - soil duplicate sample

M - sediment (settled, fluid-borne solid)

N - sediment duplicate

G - groundwater

H - groundwater duplicate sample

W - surface water

R - surface water duplicate sample

U - sludge

Y - sludge duplicate

A - air

Z - liquid waste (including IDW drums)

V - solid waste (including IDW drums)

T - trip blank

E - equipment rinsate blank

D - DI system blank

P - potable water blank

F - field blank

L - filter blank

B - EPA blind spike sample

2 - cement blank

3 - drilling mud

4 - grout blank

5 - bentonite blank

6 - sand blank

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page:

Time: 15:23

| APX9-METAL SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS>                                                                                 | 027-S-0001-01<br>027S000101<br>1-124683S<br>027S000101<br>06/06/95<br>Soil<br>MG/KG                       | 027-S-0001-05<br>027S000105<br>1-124684S<br>027S000105<br>06/06/95<br>Soil<br>MG/KG                               | 027-S-0001-14<br>027S000114<br>1-124685S<br>027S000114<br>06/06/95<br>Soil<br>MG/KG                                       | 027-S-0002-01 027-S-0002-0275000201 0275000206 1-124686S 1-124687S 0275000201 0275000206 06/06/95 Soil MG/KG MG/KG                                                                                                         | 027s000212<br>1-124688s                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| SB Antimony AS Arsenic BA Barium BE Beryllium CD Cadmium CR Chromium CO Cobalt CU Copper PB Lead HG Mercury NI Nickel SE Selenium AG Silver TL Thallium Vanadium ZNN Zinc Tin | 19.1 J 33. J 153. J 1.2 J 1.3 J 9. J 3.8 UJ 13.5 J 40.4 1.6 5.5 UJ 0.48 J 6.6 J 0.43 UJ 9.7 J 178. 12.1 J | 20.4 J 11.9 J 160. J 0.42 J 2.6 J 9.4 J 8.1 J 17.5 J 12.6 0.12 U 20.8 J 0.52 U 0.77 UJ 0.52 UJ 19.9 J 54.2 3.9 UJ | 1441 VAL  12.8 UR 6.4 J 72.9 J 0.34 J 2.2 J 6.4 J 7.4 J 12.7 J 8.5 0.12 U 15.1 J 0.51 U 0.77 UJ 0.51 UJ 14.6 J 39.9 5.5 J | 1441 VAL 1441  18.5 J 18. 15.9 J 13.2 109. J 191. 0.97 J 0.54 0.7 UJ 2.4 5.5 J 10.3 4.5 UJ 11.9 14.3 J 18. 22.9 14.5 0.3 0.12 5.9 UJ 26.3 0.47 U 26.3 0.47 U 0.51 2.3 UJ 0.57 0.47 UJ 0.55 2.3 UJ 0.57 69.7 60.8 5.5 J 4.4 | J 73.8 J 0.33 J 1.3 J 7.4 J 8. J 16.1 J 10.7 2 U 0.12 U 16.5 J 1 U 0.51 U 7 UJ 0.51 U J 15.6 J 51.1 |
|                                                                                                                                                                               |                                                                                                           |                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                     |

#### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page: 2 Time: 15:23

027-S-0004-12 027-s-0003-12 027-S-0004-01 027-S-0004-06 027-S-0003-01 027-8-0003-06 APX9-METAL SAMPLE ID ----> 0278000312 0278000401 0278000406 0278000412 ORIGINAL ID ----> 0278000301 0278000306 8-124863s 8-124864\$ 8-124860s 8-124861\$ 8-124862S 8-124859s LAB SAMPLE ID ---> 027\$000406 027\$000412 0278000306 0278000312 027S000401 ID FROM REPORT --> 0278000301 06/08/95 06/08/95 06/08/95 06/08/95 06/08/95 06/08/95 SAMPLE DATE ----> Soil MATRIX ----> Soil Soil Soil Soil Soil MG/KG MG/KG MG/KG MG/KG MG/KG UNITS ----> MG/KG CAS # Parameter 1446 VAL 1446 VAL 1446 VAL 1446 VAL 1446 VAL 1446 VAL 12.9 UJ 11.8 UJ 12.3 UJ 12.9 UJ 13.9 UJ 12.3 UJ SB Antimony 3.5 10.3 AS Arsenic 4.9 6.3 10.6 10. 225. 163. 100. Barium 111. 197. 131. ВА 0.46 0.68 0.46 0.41 BE Beryllium 0.83 0.61 J 0.78 U CD Cadmium 0.97 0.74 0.77 1.6 0.74 17. 11.6 10.8 CR. Chromium 8.6 14.3 13.8 8.7 Cobalt 3.2 11.7 7.2 5.8 10. CO CU 17.6 10. 12.4 38.4 11.7 12.9 Copper 11.7 РΒ Lead 40.9 7.7 11.9 60.5 11.6 1.7 0.12 0.12 1.2 0.12 U 0.12 HG Mercury 28.1 20.1 NI Nickel 9.1 22.7 24. 11. UR 0.71 ÜR 0.63 UR 0.75 UR SE |Selenium 0.76 UR 0.7 0.73 UR 1.3 AG Silver 1.2 UR 1.2 UR 1.3 UR 8.4 1.2 UR UR 0.56 UJ 0.49 UJ 0.52 IJJ 0.47 0.49 UJ 0.51 TL Thallium UJ 17.7 18.8 17.3 Vanadium 11.1 20.8 24.6 239. 54.5 53.1 Zinc 57. ZN 155. 47.1 3.7 6.8 SN Tin 16.6 4.2 7.1 22.1 U U

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page: 3 Time: 15:23

| APX9-METAL SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS>                                                                                   | 027\$000501<br>8-124865\$<br>027\$000501                                                            | 027-s-0005-06<br>027s000506<br>8-124866s<br>027s000506<br>06/08/95<br>Soil<br>MG/KG                | 027-s-0005-12<br>027s000512<br>8-124867s<br>027s000512<br>06/08/95<br>Soil<br>MG/KG              | 027-C-0005-12<br>027C000512<br>8-124857S<br>027C000512<br>06/08/95<br>Soil<br>MG/KG                   | 027-s-0006-01<br>027s000601<br>8-124868s<br>027s000601<br>06/08/95<br>soil<br>MG/KG                 | 027-S-0006-06<br>0275000606<br>8-124869S<br>0275000606<br>06/08/95<br>Soil<br>MG/KG                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| CAS # Parameter                                                                                                                                                                 | 1446 VAL                                                                                            | 1446 VAL                                                                                           | 1446 VAL                                                                                         | 1446 VAL                                                                                              | 1446 VAL                                                                                            | 1446 VAL                                                                                             |
| SB Antimony AS Arsenic BA Barium BE Beryllium CD Cadmium CR Chromium CO Cobalt CU Copper PB Lead HG Mercury Ni Nickel SE Selenium AG Silver TL Thallium Vanadium ZN Zinc SN Tin | 12.1 UJ 9.4 202. 0.45 J 0.82 J 11.2 8. J 23.5 43.7 0.75 18.7 0.58 UR 2.3 J 0.48 UJ 15.4 138. 11.3 U | 12.3 UJ 5.6 121. 0.34 J 0.74 U 9.9 6.1 J 7.1 7. 0.12 U 14.9 0.52 UR 1.2 UR 0.49 UJ 14.4 39.5 4.8 U | 12.5 UJ 5.1 115. 0.4 J 0.75 U 15. 5.1 J 7.9 7.8 0.12 U 14.9 1.1 UR 1.2 UR 0.5 UJ 17.5 45.9 3.7 U | 12.4 UJ 7.7 131. 0.57 J 0.75 U 17.3 7.2 J 8.9 11.9 0.12 U 16.6 0.71 UR 1.2 UR 0.87 UJ 25.1 56.9 3.7 U | 12.8 UJ 7.7 120. 0.65 J 0.77 U 16.4 6.6 J 11. 30.6 0.25 14.9 0.86 UR 1.3 UR 0.51 UJ 19.1 86.8 6.4 U | 12.1 UJ 8.9 294. 0.59 J 0.72 U 16.7 8.7 J 13.1 9.4 0.11 U 33.1 0.54 UR 1.2 UR 0.48 UJ 30. 73.4 6.4 U |

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page: 4 Time: 15:23

| APX9-METAL                                  |                                                                                                                                 | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 027-s-0006-1<br>027s000612<br>8-124870s<br>027s000612<br>06/08/95<br>soil<br>MG/KG | 2                                   | 027-S-0007-0<br>027S000701<br>8-124871S<br>027S000701<br>06/08/95<br>Soil<br>MG/KG                                            | <b>1</b>               | 027-s-0007-06<br>027s000706<br>8-124872s<br>027s000706<br>06/08/95<br>Soil<br>MG/KG |                                     | 027-s-0007-1<br>027s000712<br>8-124873s<br>027s000712<br>06/08/95<br>Soil<br>MG/KG                                             | 2                         | 027-s-0008-0<br>027s000801<br>8-124874s<br>027s000801<br>06/08/95<br>soil<br>MG/KG                                               | 1                        | 027-S-0008-06<br>027S000806<br>8-124875S<br>027S000806<br>06/08/95<br>Soil<br>MG/KG | <b>.</b>                         |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|----------------------------------|
| CAS #                                       | Parameter                                                                                                                       |                                                                                    | 1446                                                                               | VAL                                 | 1446                                                                                                                          | VAL                    | 1446                                                                                | VAL                                 | 1446                                                                                                                           | VAL                       | 1446                                                                                                                             | VAL                      | 1446                                                                                | VAL                              |
| AS BA BE CD CR CO CU PB HG NI SE AG TL V ZN | Antimony Arsenic Barium Beryllium Cadmium Chromîum Cobalt Copper Lead Mercury Nickel Selenium Silver Thallium Vanadium Zinc Tin |                                                                                    | 12.6 5.1 110. 0.39 0.76 13.4 4.2 8.6 6.1 0.12 14.4 0.71 1.3 0.5 12.9 55.5 3.8      | UJ<br>J<br>U<br>UR<br>UR<br>UJ<br>U | 10.7<br>4.<br>148.<br>0.21<br>0.97<br>6.7<br>1.3<br>38.3<br>277.<br>3.1<br>5.3<br>0.43<br>15.8<br>0.43<br>2.8<br>163.<br>19.9 | UJ<br>U<br>U<br>U<br>U | 12. 7. 167. 0.46 0.72 15. 7. 7.7 7.8 0.11 19.6 0.48 1.2 0.48 23.5 45.4 4.           | UJ<br>J<br>U<br>UR<br>UR<br>UJ<br>U | 11.9<br>8.7<br>151.<br>0.38<br>0.72<br>13.5<br>7.6<br>7.4<br>10.6<br>0.11<br>19.4<br>0.48<br>1.2<br>0.48<br>19.8<br>58.5<br>6. | UJ<br>U<br>UR<br>UR<br>UJ | 11.3<br>10.6<br>110.<br>0.41<br>0.68<br>12.8<br>7.9<br>8.8<br>24.7<br>0.13<br>14.8<br>0.45<br>1.1<br>0.45<br>18.3<br>49.1<br>4.1 | J<br>U<br>UR<br>UR<br>UJ | 12.3 14.2 138. 0.44 0.74 10.2 9.3 11.8 14.5 0.12 21.8 0.49 1.2 0.49 17.2 89.2 7.7   | UJ<br>UUR<br>UR<br>UR<br>UJ<br>U |

### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page: 5 Time: 15:23

| APX9-METAL SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS>                                                                                       | 027C000806<br>8-124858S<br>027C000806                                                              | 027-s-0008-12<br>027s000812<br>9-124878s<br>027s000812<br>06/08/95<br>Soil<br>MG/KG                  | 027-c-0008-12<br>027c000812<br>9-124877S<br>027c000812<br>06/08/95<br>Soil<br>MG/KG    | 027-S-0009-01<br>0275000901<br>9-124879S<br>0275000901<br>06/08/95<br>Soil<br>MG/KG      | 027-s-0009-06<br>027s000906<br>9-124880s<br>027s000906<br>06/08/95<br>Soil<br>MG/KG       | 027-S-0009-12<br>027S000912<br>9-124881S<br>027S000912<br>06/08/95<br>Soil<br>MG/KG                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| CAS # Parameter  SB Antimony As Arsenic BA Barium BE Beryllium CD Cadmium CR Chromium CO Cobalt CU Copper PB Lead HG Mercury NI Nickel SE Selenium AG Silver TL Thallium V Vanadium | 1446 VAL  12.1 UJ 7.9 113. 0.38 J 0.73 U 11.7 7. J 9.4 9.6 0.12 U 18.3 0.75 UR 1.2 UR 0.48 UJ 17.1 | 1447 VAL  12.5 UJ 9.2 77.8 0.3 J 0.99 J 6.7 J 6.5 J 12.9 9.4 0.12 U 23.2 0.53 J 0.77 U 0.5 UJ 12.5 J | 12.6 UJ 7.8 68.6 0.3 J 1.3 J 8. 6.4 J 13.4 6.8 0.12 U 18.5 0.51 UJ 0.83 J 0.51 UJ 13.2 | 12.3 UJ 11.2 52.7 0.33 J 1.1 J 9.7 5.4 J 11.3 10.2 0.12 U 10.2 0.5 J 0.74 U 0.49 UJ 26.1 | 12.8 UJ 13.7 134. 0.47 J 1.9 J 10. 7.1 J 18.1 13. 0.12 U 26.6 0.51 UJ 0.76 U 0.51 UJ 18.9 | 1447 VAL  13. UJ 7.9 60.1 0.28 J 0.78 UJ 4.9 J 5.7 J 13.2 9. 0.12 U 17.5 0.53 J 0.97 J 0.5 UJ 13.1 |
| Zinc<br>SN Tin                                                                                                                                                                      | 44.6 J<br>4.8 U                                                                                    | 40.<br>5.2 U                                                                                         | 3.8 U                                                                                  | 31.6<br>3.7 U                                                                            | 59.<br>4.3 U                                                                              | 38.<br>7.7 U                                                                                       |

#### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page: 6 Time: 15:23

| SM846-PEST SAMPLE ID>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 027SSB1001<br>143759<br>027SSB1001<br>03/06/96<br>03/14/96<br>03/16/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 027-S-0002-01<br>027SSB1101<br>143760<br>027SSB1101<br>03/06/96<br>03/14/96<br>03/16/96<br>Soil<br>UG/KG                                                                             |                                       | 027-S-0005-0<br>027SSB1201<br>143761<br>027SSB1201<br>03/06/96<br>03/14/96<br>03/18/96<br>Soil<br>UG/KG                                                                          | 1                                       |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| CAS # Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1717 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /AL | 1717                                                                                                                                                                                 | VAL                                   | 1717                                                                                                                                                                             | VAL                                     | AL . |
| 309-00-2 58-89-9 319-84-6 319-85-7 319-86-8 delta-BHC 57-74-9 Chlordane 72-54-8 4,4'-DDD 72-55-9 4,4'-DDT 50-29-3 60-57-1 Dieldrin 959-98-8 Endosulfan I 33213-65-9 Endosulfan II 1031-07-8 Endosulfan sulfate 72-20-8 Fadrin 7421-93-4 Heptachlor Heptachlor Heptachlor 1024-57-3 72-43-5 8001-35-2 Toxaphene 12674-11-2 Aroclor-1016 11104-28-2 Aroclor-1221 11141-16-5 53469-21-9 Aroclor-1248 11097-69-1 Aroclor-1254 Aroclor-1260 53494-70-5 5103-71-9 alpha-Chlordane 5103-74-2 gamma-Chlordane Technical Chlordane | 2.1 U 2.1 U 2.1 U 2.1 U 2.1 U 2.1 U 3.1 U 4.2 U 4.1 U 4.2 U 4.2 U 4.2 U 4.1 U 4.2 U 4.2 U 4.2 U 4.1 U 4.2 U 4.2 U 4.1 U 4.2 U 4.2 U 4.2 U 4.3 U 4.3 U 4.4 U 4.4 U 4.5 U 4.5 U 4.6 U 4.7 U 4.8 U 4.9 U 4.9 U 4.9 U 4.1 U 4.1 U 4.1 U 4.2 U 4.2 U 4.3 U 4.3 U 4.4 U 4.4 U 4.5 U 4.7 U 4.8 U 4.9 U 4.9 U 4.9 U 4.1 U 4.1 U 4.1 U 4.1 U 4.2 U 4.2 U 4.3 U 4.3 U 4.3 U 4.4 U 4.5 U 4.7 U 4.8 U 4.9 U 4.9 U 4.1 U |     | 9.7<br>2.<br>2.<br>2.<br>2.<br>NR<br>4.<br>4.<br>19.<br>1200.<br>2.<br>4.<br>4.<br>8.1<br>4.<br>2.<br>19.<br>20.<br>40.<br>40.<br>40.<br>40.<br>40.<br>40.<br>40.<br>40.<br>40.<br>4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>NR<br>2.6<br>4.1<br>14.<br>710.<br>2.<br>4.1<br>4.5<br>4.1<br>2.<br>6.<br>20.<br>41.<br>41.<br>41.<br>41.<br>41.<br>41.<br>41.<br>41.<br>41. | ח חחמחחחחחחח במח חחחחחחחחחחחחחחחחחחחחחח |      |

132-64-9 Dibenzofuran

# NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMII 27 - SOIL SAMPLES

Page: 7 Time: 15:23

SWMU 27 - SOIL SAMPLES 027-S-0005-01 SW846-SVOA SAMPLE ID ----> 027-S-0001-01 027-5-0002-01 ORIGINAL ID ----> 027SSB1001 027SSB1101 027SSB1201 143760 143761 143759 LAB SAMPLE ID ---> 027SSB1101 027SSB1201 ID FROM REPORT --> 027SSB1001 03/06/96 03/06/96 SAMPLE DATE ----> 03/06/96 03/11/96 DATE EXTRACTED --> 03/11/96 03/11/96 03/12/96 03/12/96 DATE ANALYZED ---> 03/12/96 MATRIX ----> Soil Soil Soil UNITS ----> ug/Kg ug/Kg ug/Kg 1717 VAL 1717 VAL 1717 VAL CAS # Parameter 108-95-2 Phenol 420. U 400. U 410. U 111-44-4 bis(2-Chloroethyl)ether 420. u 400. U 410. U 95-57-8 2-Chlorophenol 400. U 410. U 420. U 541-73-1 1,3-Dichlorobenzene 420. U 400. П 410. U 106-46-7 1.4-Dichlorobenzene 420. Ħ 400. U 410. IJ 95-50-1 1,2-Dichlorobenzene 420. U 400. U 410. U u 410. U 95-48-7 2-Methylphenol (o-Cresol) 420. บ 400. 410. U 108-60-1 2,2'-oxybis(1-Chloropropane) 420. u 400. U 106-44-5 4-Methylphenol (p-Cresol) 420. H 400. u 410. u U 621-64-7 N-Nitroso-di-n-propylamine 420. U 400. U 410. 420. 400. u 410. u 67-72-1 Hexachloroethane u 98-95-3 Nitrobenzene υ 410. U 420. U 400. 78-59-1 Isophorone 420. u 400. U 410. U 410. U 88-75-5 2-Nitrophenol 420. u 400. U 400. u 410. U 105-67-9 2,4-Dimethylphenol 420. U 120-83-2 2,4-Dichlorophenol 420. U 400. U 410. U 120-82-1 1,2,4-Trichlorobenzene 420. u 400. U 410. u 410. 91-20-3 Naphthalene 420. П 250. J U 106-47-8 4-Chloroaniline 420. H 400. U 410. U 420. U 400. u 410. U 87-68-3 | Hexachlorobutadiene 111-91-1 bis(2-Chloroethoxy)methane 420. U 400. U 410. U 400. U 410. IJ 59-50-7 4-Chloro-3-methylphenol 420. Ú 91-57-6 2-Methylnaphthalene 420. U 63. J 410. U 400. u 410. П 77-47-4 Hexachlorocyclopentadiene 420. u 88-06-2 2,4,6-Trichlorophenol 420. U 400. u 410. U u 1000. U 95-95-4 2.4.5-Trichlorophenol 1000. u 1000. 91-58-7 2-Chloronaphthalene 420. U 400. U 410. U 88-74-4 2-Nitroaniline 1000. U 1000. U 1000. U U 410. U 131-11-3 Dimethyl phthalate 420. 400. U 45. 208-96-8 Acenaphthylene 420. u 43. J J 606-20-2 2.6-Dinitrotoluene 420. U 400. U 410. Ü 99-09-2 3-Nitroaniline 1000. Ü 1000. U 1000. Ü U 410. U 83-32-9 Acenaphthene 420. 300. J U 1000. U 51-28-5 2,4-Dinitrophenol 1000. u 1000. 100-02-7 4-Nitrophenol 1000. U 1000. U 1000.

410.

240.

420.

u

#### NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C SWMU 27 - SOIL SAMPLES

Page: 8 Time: 15:23

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           | Dillo 27 Bol                                                                                                                                                            |                                                                                                                                                                                                                                                                        | <br> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| SUB46-SVOA SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT SAMPLE DATE DATE EXTRACTED DATE ANALYZED MATRIX UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > 027SSB1001<br>> 143759<br>> 027SSB1001<br>> 03/06/96<br>> 03/11/96<br>> 03/12/96<br>> Soil                                                                                                                                                                                                                                                                              | 027-s-0002-01<br>027ssB1101<br>143760<br>027ssB1101<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg                                                                | 027-s-0005-01<br>027ssB1201<br>143761<br>027ssB1201<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg                                                                                                                                                               |      |  |
| CAS # Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1717 VAL                                                                                                                                                                                                                                                                                                                                                                  | 1717 VAL                                                                                                                                                                | 1717 VAL                                                                                                                                                                                                                                                               |      |  |
| 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 84-74-2 206-44-0 129-00-0 85-68-7 86-73-8 84-74-2 206-44-0 117-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 217-84-0 21 | 420. U 420. U 420. U 420. U 1000. U 1000. U 420. U 41. J 50. J 420. U 420. U 420. U 41. J 50. J 420. U | 400. U 400. U 400. U 380. J 1000. U 1000. U 400. U 400. U 1000. U 3000. 640. 600. 400. U 2900. 2400. 400. U 1400. U 1400. U 1400. U 1200. 890. 1100. 520. 230. J 530. J | 410. U 410. U 410. U 410. U 1000. U 1000. U 410. U 410. U 1000. U 360. J 94. J 40. J 410. U 630. 560. 410. U 410. U 320. J 310. J 410. U 410. U 320. J 310. J 410. U 410. U 320. J 310. J 410. U 410. U 410. U 410. J 410. U 410. U 410. J 430. J 280. J 290. J 140. J |      |  |

## NSA MEMPHIS NSA MEMPHIS, RFI, ASSEMBLY C

Page: 9

Time: 15:23

| SW846-VOA SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE ANALYZED> MATRIX> UNITS>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 027-c-0005-12<br>027c000512<br>124857<br>027c000512<br>06/08/95<br>06/12/95<br>Soil<br>UG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 027-C-0008-06<br>027C000806<br>124858<br>027C000806<br>06/08/95<br>06/13/95<br>Soil<br>UG/KG                                                                                                                                                                                                                                                                                                     | 027-c-0008-12<br>027c000812<br>124877<br>027c000812<br>06/08/95<br>06/12/95<br>Soil<br>UG/KG                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CAS # Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1446 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1446 VAL                                                                                                                                                                                                                                                                                                                                                                                         | 1447 VAL                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 74-87-3 74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-35-4 75-35-4 75-34-3 540-59-0 67-66-3 107-06-2 78-93-3 2-Butanone (MEK) 71-55-6 56-23-5 75-27-4 78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5 71-43-2 10061-02-6 17-8-6 127-18-4 17-18-6 127-18-4 17-18-6 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-90-90-90-90-90-90-90-90-90-90-90-90- | 12. U 13. U 14. U 15. U 16. U 17. U | 12. UJ | 12. U |  |  |

Sample Location:027S000101 Lab File ID:NAS195.001 Calibration Std.:vc0606.001 Date: 06/06/95 Blank: blk0606.001 Dilution:

on:

|                           | Concen.   | Concen.    | Blank   |
|---------------------------|-----------|------------|---------|
| Compound                  | PID (ppb) | Hall (ppb) | Concen. |
| /inyl Chloride            | BDL       | BDL        |         |
| ,1-Dichloroethene         | BDL       | BDL        |         |
| 1,2-Dichloroethene        | BDL       | BDL        |         |
| -1,2-Dichloroethene       | BDL       | BDL        |         |
| ,1-Dichloropropene        | BDL       | BDL        |         |
| enzene                    | BDL       | n/a        |         |
| richloroethene            | BDL       | BDL        |         |
| -1,3-Dichloropropene      | BDL       | BDL        |         |
| 1,3-Dichloropropene       | BDL       | BDL        |         |
| oluene                    | BDL       | n/a        |         |
| etrachloroethene          | BDL       | BDL        |         |
| hlorobenzene              | BDL       | BDL        |         |
| thylbenzene               | BDL       | n/a        |         |
| n,p-Xylenes               | BDL       | n/a        |         |
| tyrene                    | BDL       | n/a        |         |
| -Xylene                   | BDL       | n/a        |         |
| FB (surrogate)            | 54.2      | 34.9       |         |
| 0,42                      | BDL       | n/a        |         |
| -Propyibenzene            | BDL       | n/a        |         |
| -Chlorotoluene            | BDL       | BDL        |         |
| -Chiorotoluene            | BDL       | BOL        |         |
| 3,5-Trimethylbenzene      | BDL       | n/a        |         |
| Butylbenzene              | BDL       | n/a        |         |
| 2,4-Trimethylbenzene      | BDL       | n/a        |         |
| butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 4-Dichlorobenzene         | BDL       | BDL        |         |
| -isopropyitoluene         | BDL       | n/a        |         |
| 2-Dichlorobenzene         | BDL       | BDL        |         |
| Butylbenzene              | BDL       | n/a        |         |
| 2,4-Trichlorobenzene      | BDL       | BDL        |         |
| aphthalene                | BDL       | n/a        |         |
| exachlorobutadiene        | BDL       | BDL        |         |
| ,2,3-Trichlorobenzene     | BDL       | BDL        |         |
| ichlorofluoromethane      | n/a       | BDL        |         |
| romomethane               | n/a       | BDL        |         |
| hloroethane               | n/a       | BDL        |         |
| richlorofluoromethane     | n/a       | BDL        |         |
| ethylenechloride          | n/a       | 18.        | 10      |
| 1-Dichloroethane          | n/a       | BDL        |         |
| romochloromethane         | n/a       | BDL        |         |
| hloroform                 | n/a       | BDL        |         |
| ,2-Dichloropropane        | n/a       | BDL        |         |
| ,2-Dichloroethane         | n/a       | BDL        |         |
| 1,1-Trichloroethane       | n/a       | BDL        |         |
| arbon Tetrachloride       | n/a       | BDL        |         |
| ibromomethane             | n/a       | BDL        |         |
| 2-Dichloropropane         | n/a       | BDL        |         |
| richloroethene            | n/a       | BDL        |         |
| romodichloromethane       | n/a       | BDL        |         |
| 1,2-Trichloroethane       | n/a       | BDL        |         |
| ,3-Dichloropropene        | n/a       | BDL        |         |
| bibromochloromethane      | n/a       | BDL        |         |
| ,2-dibromomethane         | n/a       | BDL        |         |
| ,1,1,2-Tetrachloroethane  | n/a       | BDL        |         |
| romoform                  | n/a       | BDL        |         |
| 1,43                      | n/a       | BDL        |         |
| 2-Dibromo-3-chloropropene | п/а       | BDL        |         |

HydroLogic Mobile Laboratory Analytical Data - Volatile Organic Compounds Memphis Naval Air Station

Sample Location:027S000105 Lab File ID:NAS191.001 Calibration Std.:vc0606.001 Date: 06/06/95 Blank: blk0606.001 Dilution:

ition:

|                                            | Concen.      | Concen.    | Blank   |
|--------------------------------------------|--------------|------------|---------|
| Compound                                   | PiD (ppb)    | Hall (ppb) | Concen. |
| Vinyl Chloride                             | BDL          | BDL        |         |
| 1,1-Dichloroethene                         | BDL          | BDL        |         |
| t-1,2-Dichloroethene                       | BDL          | BDL        |         |
| c-1,2-Dichloraethene                       | BDL          | BDL        |         |
| 1,1-Dichloropropene                        | BDL          | BDL        |         |
| Benzene                                    | BDL          | n/a        |         |
| Trichloroethene                            | BDL          | BDL        |         |
| c-1,3-Dichloropropene                      | BDL          | BDL        |         |
| t-1,3-Dichloropropene                      | BDL          | BDL        |         |
| Toluene                                    | BDL          | n/a        |         |
| Tetrachloroethene                          | BDL          | BDL        |         |
| Chlorobenzene                              | BOL          | BDL        |         |
| Ethylbenzene                               | BDL          | n/a        |         |
| m,p-Xylenes                                | BDL          | n/a        |         |
| Styrene                                    | BDL          | n/a        |         |
| o-Xylene                                   | BDL          | n/a        |         |
| BFB (surrogate)                            | 81.1         | 64.2       |         |
| 40,42                                      | BDL          | n/a        |         |
| n-Propylbenzene                            | BDL          | n/a        |         |
| 2-Chlorotoluene                            | BDL          | BDL        |         |
| 4-Chlorotoluene                            | BDL          | BDL        |         |
| 1,3,5-Trimethylbenzene                     | BDL          | n/a        |         |
| t-Butylbenzene                             | BDL          | n/a        |         |
| 1,2,4-Trimethylbenzene                     | BDL          | n/a        |         |
| s-butylbenzene/1,3-DCB                     | BDL          | n/a        |         |
| 1,4-Dichlorobenzene                        | BDL          | BDL        |         |
| p-Isopropyitoluene                         | BDL          | n/a        |         |
| 1,2-Dichlorobenzene                        | BDL          | BDL        |         |
| n-Butylbenzene                             | BDL          | n/a        |         |
| 1,2,4-Trichlorobenzene                     | BDL          | BDL        |         |
| Naphthalene                                | BDL          | n/a        |         |
| Hexachlorobutadiene                        | BDL          | BDL        |         |
| 1,2,3-Trichlorobenzene                     | BDL          | BDL        |         |
| Dichlorofluoromethane                      | n/a          | BDL        |         |
| Bromomethane                               | n/a          | BOL        |         |
| Chloroethane                               | n/a          | BDL        |         |
| Trichlorofluoromethane                     | n/a          | BOL        |         |
| Methylenechloride                          | n/a          | 1.1.       | 10      |
| 1,1-Dichloroethane                         | n/a          | BDL        |         |
| Bromochloromethane                         | n/a.         | BDL        |         |
| Chloroform                                 | n/a          | BDL        |         |
| 2,2-Dichloropropane                        | n/a          | BDL        |         |
| 1,2-Dichloroethane                         | n/a.         | BDL        |         |
| 1,1,1-Trichloroethane                      | n/a.         | BDL        |         |
| Carbon Tetrachloride                       | n/a          | BDL        |         |
| Dibromomethane                             | n/a          | BDL<br>BDL |         |
| 1,2-Dichloropropane                        | n/a          |            |         |
| Trichloroethene                            | n/a          | BDL<br>BDL |         |
| Bromodichloromethane 1.1.2-Trichloroethane | n/a<br>n/a   | BDL        |         |
|                                            |              | BDL        |         |
| 1,3-Dichloropropene Dibromochloromethane   | n/a<br>n/a   | BDL        |         |
| 1.2-dibromomethane                         | •            | BDL        |         |
| 1,1,1,2-Tetrachloroethane                  | n/a.<br>n/a. | BDL        |         |
| Bromoform                                  | n/a.<br>n/a. | BDL        |         |
| Bandom                                     | 11/04        |            |         |
| 41,43                                      | n/a          | BDL        |         |

Sample Location:027S000114 Lab File ID:NAS196.001 Calibration Std.:vc0606.001 Date: 06/06/95 Blank: blk0606.001 Dilution:

Dilation:

1

|                                            | Concen.    | Concen.                 | Blank   |
|--------------------------------------------|------------|-------------------------|---------|
| Compound                                   | PID (ppb)  | Hall (ppb)              | Concen. |
| Vinyl Chloride                             | 8DL        | BDL                     |         |
| 1,1-Dichloroethene                         | BDL        | BDL                     |         |
| t-1,2-Dichloroethene                       | BDL        | BDL                     |         |
| c-1,2-Dichloroethene                       | BDL        | BDL                     |         |
| 1,1-Dichloropropene                        | BDL        | BDL                     |         |
| Benzene                                    | BDL        | n/a                     |         |
| Trichloroethene                            | BDL        | BDL                     |         |
| c-1,3-Dichloropropene                      | BDL        | BDL                     |         |
| t-1,3-Dichloropropene                      | BDL        | BDL                     |         |
| Toluene                                    | BDL        | n/a                     |         |
| Tetrachioroethene                          | BDL        | BDL                     |         |
| Chlorobenzene                              | BDL        | BDL                     |         |
| Ethylbenzene                               | BDL        | n/a                     |         |
| m,p-Xylenes                                | BDL        | n/a                     |         |
| Styrene                                    | BDL        | n/a                     |         |
| o-Xylene                                   | BDL        | n/a                     |         |
| BFB (surrogate)                            | 76.9       | 62.8                    |         |
| 40,42                                      | BDL        | n/a                     |         |
| n-Propylbenzene                            | BDL        | n/a                     |         |
| 2-Chlorotoluene                            | BDL        | BDL                     |         |
| 4-Chlorotoluene                            | BDL        | BDL                     |         |
| 1,3,5-Trimethylbenzene                     | BDL        | n/a                     |         |
| t-Butylbenzene                             | BDL        | n/a                     |         |
| 1,2,4-Trimethylbenzene                     | BDL        | n/a                     |         |
| s-butylbenzene/1,3-DCB                     | BDL        | n/a                     |         |
| 1,4-Dichlorobenzene                        | BDL        | BDL                     |         |
| p-isopropyltoluene                         | BDL        | n/a                     |         |
| 1,2-Dichlorobenzene                        | BDL        | BDL                     |         |
| n-Butylbenzene                             | BDL        | n/a                     |         |
| 1,2,4-Trichlorobenzene                     | BDL        | BDL                     |         |
| Naphthalene                                | BDL        | n/a                     |         |
| Hexachlorobutadiene                        | BDL        | BDL                     |         |
| 1,2,3-Trichlorobenzene                     | BDL        | BDL                     |         |
| Dichlorofluoromethane                      | n/a        | BDL<br>BDL              |         |
| Bromomethane                               | n/a        |                         |         |
| Chloroethane                               | n/a        | BDL<br>BDL              |         |
| Trichlorofluoromethane                     | n/a        |                         | 10      |
| Methylenechloride                          | n/a        | 11 <sub>2.</sub><br>BDL | 10      |
| 1,1-Dichloroethane<br>Bromochloromethane   | n/a<br>n/a | BDL                     |         |
| Chloroform                                 |            | BDL                     |         |
|                                            | n/a<br>n/a | BDL                     |         |
| 2,2-Dichloropropane                        | •          |                         |         |
| 1,2-Dichloroethane                         | n/a<br>n/a | BDL<br>BDL              |         |
| 1,1,1-Trichloroethane Carbon Tetrachloride | n/a        | BDL                     |         |
| Dibromomethane                             | n/a        | BDL                     |         |
| 1,2-Dichloropropane                        | n/a        | BDL                     |         |
| Trichloroethene                            | n/a        | BDL                     |         |
| Bromodichloromethane                       | n/a.       | BDL                     |         |
| 1.1.2-Trichloroethane                      | n/a<br>n/a | BDL<br>BDL              |         |
|                                            | n/a.       | BDL                     |         |
| 1,3-Dichloropropene Dibromochloromethane   | n/a        | BDL                     |         |
| 1,2-dibromomethane                         | n/a<br>n/a | BDL                     |         |
| 1,1,1,2-Tetrachloroethane                  | n/a<br>n/a | BDL                     |         |
|                                            |            |                         |         |
|                                            |            |                         |         |
| Bromoform<br>41,43                         | n/a<br>n/a | BDL<br>BDL              |         |

BDL

n/a

1,2-Dibromo-3-chloropropene

HydroLogic Mobile Laboratory Analytical Data - Volatile Organic Compounds Memphis Naval Air Station

Sample Location:027G000144 Lab File ID:NAS190A.001 Calibration Std.:vc0607.001 Date: 06/07/95 Biank: blk0607.001 Dilution:

n:

|                                         | Concen.     | Concen.     | Blank   |
|-----------------------------------------|-------------|-------------|---------|
| Compound                                | PID (ppb)   | Hall (ppb)  | Concen. |
| Vinyl Chloride                          | BDL         | BDL         |         |
| 1,1-Dichloroethene                      | BDL         | BDL         |         |
| -1,2-Dichloroethene                     | BDL         | BDL         |         |
| >-1,2-Dichloroethene                    | BDL         | BDL         |         |
| ,1-Dichloropropene                      | BDL         | BDL         |         |
| Benzene                                 | BDL         | n/a         |         |
| Trichloroethene                         | BDL         | BDL         |         |
| :-1,3-Dichloropropene                   | BDL         | BDL         |         |
| -1,3-Dichloropropene                    | BDL         | BDL         |         |
| oluene                                  | BDL         | n/a         |         |
| etrachloroethene                        | BDL         | BDL         |         |
| Chlorobenzene                           | BDL         | BDL<br>,    |         |
| thylbenzene                             | BDL         | n/a         |         |
| n,p-Xylenes                             | BDL         | n/a         |         |
| Styrene                                 | BDL         | n/a         |         |
| -Xylene                                 | BDL<br>91.1 | n/a<br>87.6 |         |
| BFB (surrogate)<br>10.42                | 91.1<br>BDL | 87.6<br>n/a |         |
| •                                       | BDL         |             |         |
| i-Propylbenzene<br>i-Chlorotoluene      | BDL         | n/a<br>BDL  |         |
| -Chlorotoluene<br>-Chlorotoluene        | BDL         | BDL         |         |
| ,3,5-Trimethylbenzene                   | BDL         | n/a         |         |
| -3,5- mmetryiberizerie<br>-Butylbenzene | BDL         | n/a         |         |
| ,2,4-Trimethylbenzene                   | BDL         | n/a         |         |
| -butylbenzene/1,3-DCB                   | BDL         | n/a         |         |
| ,4-Dichlorobenzene                      | BDL<br>BDL  | BDL         |         |
| -Isopropyitoluene                       | BDL         | n/a         |         |
| ,2-Dichlorobenzene                      | BDL         | BDL         |         |
| -Butylbenzene                           | BDL         | n/a         |         |
| ,2,4-Trichlorobenzene                   | BDL         | BDL         |         |
| laphthalene                             | BDL         | n/a         |         |
| lexachlorobutadiene                     | BDL         | BOL         |         |
| ,2,3-Trichlorobenzene                   | BDL         | BDL         |         |
| Dichlorofluoromethane                   | n/a         | BDL         |         |
| Bromomethane                            | n/a         | BDL         |         |
| Chloroethane                            | n/a         | BDL         |         |
| richlorofluoromethane                   | n/a         | BDL         |         |
| Methylenechloride                       | n/a         | BDL         | 10      |
| ,1-Dichloroethane                       | n/a         | BDL         |         |
| Bromochloromethane                      | n/a         | BDL         |         |
| Chloroform                              | n/a         | BDL         |         |
| 2,2-Dichloropropane                     | n/a         | BDL         |         |
| ,2-Dichloroethane                       | n/a         | BDL         |         |
| ,1,1-Trichloroethane                    | n/a         | BDL         |         |
| Carbon Tetrachloride                    | n/a         | BDL         |         |
| Dibromomethane                          | n/a         | BDL         |         |
| ,2-Dichloropropane                      | n/a         | BDL         |         |
| richloroethene                          | n/a         | BDL         |         |
| Promodichloromethane                    | n/a         | BDL         |         |
| ,1,2-Trichloroethane                    | n/a         | BDL         |         |
| ,3-Dichloropropene                      | n/a         | BDL         |         |
| Dibromochloromethane                    | n/a         | BDL         |         |
| ,2-dibromomethane                       | n/a         | BDL         |         |
| ,1,1,2-Tetrachioroethane                | n/a         | BDL         |         |
| Bromoform                               | n/a<br>- '- | BDL         |         |
| 1,43                                    | n/a         | BDL         |         |
| 2-Dibromo-3-chloropropene               | n/a         | BDL         |         |

Sample Location:027S000201 Lab File ID:NAS194.001 Calibration Std.:vc0606.001 Date: 06/06/95 Blank: blk0606.001 Dilution:

on:

|                                            | Concen.      | Concen.    | Blank  |
|--------------------------------------------|--------------|------------|--------|
| Compound                                   | PID (ppb)    | Hall (ppb) | Concen |
| /inyl Chloride                             | BDL          | BDL        |        |
| 1,1-Dichloroethene                         | BDL          | BDL        |        |
| -1,2-Dichloroethene                        | BDL          | BDL        |        |
| c-1,2-Dichloroethene                       | BDL          | BDL        |        |
| ,1-Dichloropropene                         | BDL.         | BDL        |        |
| Benzene                                    | BDL          | n/a        |        |
| Trichloroethene                            | BDL          | BDL        |        |
| c-1,3-Dichloropropene                      | BDL          | BDL        |        |
| -1,3-Dichloropropene                       | BDL          | BDL        |        |
| Foluene                                    | BDL          | n/a        |        |
| Tetrachloroethene                          | BDL          | BDL        |        |
| Chlorobenzene                              | BDL          | BDL        |        |
| Ethylbenzene                               | BDL          | n/a        |        |
| n,p-Xylenes                                | BDL          | n/a        |        |
| Styrene                                    | BDL          | n/a        |        |
| >Xylene                                    | BDL          | n/a        |        |
| BFB (surrogate)                            | 61.6         | 41.1       |        |
| 0,42                                       | BDL BDL      | n/a        |        |
| -Propylbenzene                             | BDL BDL      | n/a        |        |
| -Propyiberizerie<br>-Chlorotoluene         | BDL          | BDL        |        |
| -Chlorotoluene                             | BDL          | BDL        |        |
|                                            | BDL<br>BDL   | n/a        |        |
| ,3,5-Trimethylbenzene                      | BDL          | •          |        |
| Butylbenzene                               |              | n/a        |        |
| ,2,4-Trimethylbenzene                      | BDL          | n/a        |        |
| -butylbenzene/1,3-DCB                      | BDL          | n/a        |        |
| ,4-Dichlorobenzene                         | BDL          | BDL        |        |
| -Isopropyitoluene                          | BDL          | n/a        |        |
| ,2-Dichlorobenzene                         | BDL          | BDL        |        |
| -Butyibenzene                              | BDL          | n/a        |        |
| ,2,4-Trichlorobenzene                      | BDL          | BDL        |        |
| laphthalene                                | BDL          | n/a        |        |
| lexachlorobutadiene                        | BDL          | BDL        |        |
| ,2,3-Trichlorobenzene                      | BDL          | BDL        |        |
| Dichlorofluoromethane                      | n/a          | BDL        |        |
| 3romomethane                               | n/a          | BDL        |        |
| Chloroethane                               | n/a          | BDL        |        |
| richlorofluoromethane                      | n/a          | BDL        |        |
| Methylenechloride                          | n/a          | 15         | 10     |
| ,1-Dichloroethane                          | n/a          | BDL        |        |
| Bromochloromethane                         | n/a          | BOL        |        |
| Chloroform                                 | n/a          | BDL        |        |
| ,2-Dichloropropane                         | n/a          | BDL        |        |
| ,2-Dichloroethane                          | n/a          | BDL        |        |
| ,1,1-Trichloroethane                       | n/a          | BOL        |        |
| Carbon Tetrachloride                       | n/a          | BDL        |        |
| Dibromomethane                             | n/a          | BDL        |        |
| ,2-Dichloropropane                         | n/a          | BOL        |        |
| richloroethene                             | n/a          | BOL        |        |
| Promodichloromethane                       | n/a          | BDL        |        |
| .1.2-Trichloroethane                       | n/a          | BDL        |        |
| ,3-Dichloropropene                         | n/a          | BDL        |        |
| ,3-Dichloropropene<br>Dibromochloromethane | n/a.<br>n/a. | BDL        |        |
| .2-dibromomethane                          |              |            |        |
| ,1,1,2-Tetrachloroethane                   | n/a          | BDL        |        |
| • • •                                      | n/a          | BDL        |        |
| Bromoform                                  | n/a          | BDL<br>BDL |        |
| 31,43                                      | n/a          | BDL        |        |

Sample Location:027S000206 Lab File ID:NAS192.001 Calibration Std.:vc0606.001 Date: 06/06/95 Blank: blk0606.001 Dilution:

ution:

|                           | Concen.   | Concen.    | Blank   |
|---------------------------|-----------|------------|---------|
| Compound                  | PID (ppb) | Hall (ppb) | Concen. |
| /inyl Chloride            | BDL       | BDL        |         |
| 1,1-Dichloroethene        | BDL       | BDL        |         |
| -1,2-Dichloroethene       | BDL       | BDL        |         |
| c-1,2-Dichloroethene      | BDL       | BDL        |         |
| 1,1-Dichloropropene       | BDL       | BDL        |         |
| Benzene                   | BDL       | n/a        |         |
| Trichloroethene           | BDL       | BDL        |         |
| c-1,3-Dichloropropene     | BDL       | BDL        |         |
| -1,3-Dichloropropene      | BDL       | BDL        |         |
| Toluene                   | BDL       | n/a        |         |
| Tetrachloroethene         | BDL       | BDL        |         |
| Chlorobenzene             | BDL       | BDL        |         |
| Ethylbenzene              | BDL       | n/a        |         |
| m,p-Xylenes               | BDL       | n/a        |         |
| Styrene                   | BDL       | n/a        |         |
| o-Xylene                  | BDL       | n/a        |         |
| BFB (surrogate)           | 75.5      | 64.8       |         |
| 40,42                     | BDL       | n/a        |         |
| n-Propylbenzene           | BDL       | n/a        |         |
| 2-Chlorotoluene           | BDL       | BDL        |         |
| 4-Chlorotoluene           | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene    | BDL       | n/a        |         |
| -Butylbenzene             | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene    | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB    | BDL       | n/a        |         |
| I 4-Dichlorobenzene       | BDL       | BDL        |         |
| o-Isopropyitoluene        | BDL       | n/a        |         |
| ,2-Dichlorobenzene        | BDL       | BDL        |         |
| n-Butylbenzene            | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene    | BDL       | BDL        |         |
| Naphthalene               | BDL       | n/a        |         |
| Hexachlorobutadiene       | BOL       | BDL        |         |
| 1.2.3-Trichlorobenzene    | BDL       | BDL        |         |
| Dichlorofluoromethane     | n/a       | BDL        |         |
| Bromomethane              | n/a       | BDL        |         |
| Chloroethane              | n/a       | BDL        |         |
| Trichlorofluoromethane    | n/a       | BDL        |         |
| Methylenechloride         | n/a       | 1.1        | 10      |
| 1.1-Dichloroethane        | n/a       | BDL        |         |
| Bromochloromethane        | n/a       | BDL        |         |
| Chloroform                | n/a       | BDL        |         |
| 2,2-Dichloropropane       | n/a       | BDL        |         |
| 1,2-Dichloroethane        | n/a       | BDL        |         |
| 1,1,1-Trichloroethane     | n/a       | BDL        |         |
| Carbon Tetrachloride      | n/a       | BDL        |         |
| Dibromomethane            | n/a       | BDL        |         |
| 1,2-Dichloropropane       | n/a       | BDL        |         |
| Trichloroethene           | n/a       | BDL        |         |
| Bromodichloromethane      | n/a       | BDL        |         |
| 1,1,2-Trichloroethane     | n/a       | BDL        |         |
| 1,3-Dichloropropene       | n/a       | BDL        |         |
| Dibromochloromethane      | n/a       | BDL        |         |
| 1.2-dibromomethane        | n/a       | BDL        |         |
| 1,1,1,2-Tetrachioroethane | n/a       | BDL        |         |
| Bromoform                 | n/a       | BDL        |         |
| 41,43                     | n/a       | BDL        |         |
| 11,740                    | n/a       | BDL        |         |

Sample Location:027S000212 Lab File ID:NAS193.001 Calibration Std.:vc0606.001

Date: 06/06/95 Blank: blk0606.001 Dilution:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concen.    | Concen.    | Blank   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PID (ppb)  | Hall (ppb) | Concen. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDL        | BDL        |         |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BDL        | BDL        |         |
| t-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BDL        | BDL        |         |
| c-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BDL        | BDL        |         |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL        | BDL        |         |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BDL        | n/a        |         |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDL        | BDL        |         |
| c-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL        | BDL        |         |
| t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL        | BDL        |         |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8DL        | n/a        |         |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BDL        | BDL        |         |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDL        | BDL        |         |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BDL        | n/a        |         |
| m,p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDL        | n/a        |         |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BDL        | n/a        |         |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BDL        | n/a        |         |
| BFB (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.3       | 65.3       |         |
| 40,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL        | n/a        |         |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDL        | n/a        |         |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDL        | BDL        |         |
| 4-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDL        | BDL        |         |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BDL        | n/a        |         |
| t-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BDL        | n/a        |         |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BDL        | n/a        |         |
| s-butylbenzene/1,3-DCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BDL        | n/a        |         |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL        | BOL        |         |
| p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BDL        | n/a        |         |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL        | BDL        |         |
| n-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BDL        | n/a        |         |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BDL        | BDL        |         |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BOL        | n/a        |         |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BOL        | BDL        |         |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BDL        | BDL        |         |
| Dichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a        | BDL        |         |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a        | BDL<br>BDL |         |
| Chloroethane Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a        | BDL        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a<br>n/a | 10         | 10      |
| Methylenechloride  1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a        | BDL        | 10      |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a.       | BDL        |         |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a        | BDL        |         |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a        | BDL        |         |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a        | BDL        |         |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a        | BDL        |         |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a        | BDL        |         |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a        | BDL        |         |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a        | BDL        |         |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a        | BDL        |         |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a        | BDL        |         |
| 1.1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a        | BDL        |         |
| 1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a        | BDL        |         |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a        | BDL        |         |
| 1.2-dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a        | BDL        |         |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a        | BDL        |         |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a        | BDL        |         |
| The state of the s |            |            |         |
| 41,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a        | BDL        |         |

Sample Location:027G000244 Lab File ID:NAS197.WKS Calibration Std.:vc0607.001

Date: 06/07/95 Blank: blk0607.001 Dilution:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PiD (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| t-1,3-Dichloropropene       | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BOL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 93.8      | 92.5       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| p-Isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BOL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechloride           | n/a       | BDL        | 11      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a.      | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |
|                             |           |            |         |

Sample Location:027G000244 Lab File ID:NAS197.WKS Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

n:

|                                         | Concen.     | Concen.    | Blank   |
|-----------------------------------------|-------------|------------|---------|
| Compound                                | PID (ppb)   | Hall (ppb) | Concen. |
| Vinyl Chloride                          | BDL         | BDL        |         |
| 1,1-Dichloroethene                      | BDL         | BDL        |         |
| t-1,2-Dichloroethene                    | BDL         | BDL        |         |
| c-1,2-Dichloroethene                    | BDL         | BOL        |         |
| t,1-Dichloropropene                     | BDL         | BDL        |         |
| Benzene                                 | BDL         | n/a        |         |
| Trichloroethene                         | BDL         | BDL        |         |
| c-1,3-Dichloropropene                   | BDL         | BDL        |         |
| t-1,3-Dichloropropene                   | BDL         | BDL        |         |
| Toluene                                 | BDL         | n/a        |         |
| Tetrachloroethene                       | BDL         | BDL        |         |
| Chlorobenzene                           | BDL         | BDL        |         |
| Ethylbenzene                            | BDL         | n/a        |         |
| m,p-Xylenes                             | BDL         | n/a        |         |
| Styrene                                 | BDL         | n/a        |         |
| o-Xylene                                | BDL         | n/a        |         |
| BFB (surrogate)                         | 93.8        | 92.5       |         |
| 40,42                                   | BDL         | n/a        |         |
| n-Propylbenzene                         | BDL         | n/a        |         |
| 2-Chiorotoluene                         | BDL         | BDL        |         |
| 4-Chlorotoluene                         | BDL         | BDL        |         |
| 1,3,5-Trimethylbenzene                  | BDL         | n/a        |         |
| t-Butylbenzene                          | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene                  | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB                  | BDL         | n/a        |         |
| 1,4-Dichlorobenzene                     | BDL         | BDL        |         |
| p-Isopropyitoluene                      | BDL         | n/a        |         |
| 1,2-Dichlorobenzene                     | BDL         | BDL        |         |
| n-Butylbenzene                          | BDL         | n/a        |         |
| 1,2,4-Trichlorobenzene                  | BDL         | BDL        |         |
| Naphthalene                             | BDL         | n/a        |         |
| Hexachlorobutadiene                     | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene                  | BDL         | BDL        |         |
| Dichlorofluoromethane                   | n/a         | BDL        |         |
| Bromomethane                            | n/a         | BDL        |         |
| Chloroethane                            | n/a         | BDL        |         |
| Trichlorofluoromethane                  | n/a         | BDL        |         |
| Methylenechloride                       | n/a         | BDL        | 11      |
| 1.1-Dichloroethane                      | n/a         | BDL        |         |
| Bromochloromethane                      | n/a         | BDL        |         |
| Chloroform                              | n/a         | BDL        |         |
| 2,2-Dichloropropane                     | n/a         | BDL        |         |
| 1,2-Dichloropropane                     | n/a         | BDL        |         |
| 1,1,1-Trichloroethane                   | n/a         | BDL<br>BDL |         |
| Carbon Tetrachloride                    | n/a         | BDL        |         |
| Dibromomethane                          | n/a         | BDL        |         |
|                                         | n/a.        | BDL        |         |
| 1,2-Dichloropropane                     | n/a         | BDL        |         |
| Trichloroethene<br>Bromodichloromethane | n/a<br>n/a  | BDL        |         |
|                                         | n/a.<br>n/a | BDL        |         |
| 1,1,2-Trichloroethane                   |             |            |         |
| 1,3-Dichloropropene                     | n/a         | BDL        |         |
| Dibromochloromethane                    | n/a         | BDL        |         |
| 1,2-dibromomethane                      | n/a         | BDL        |         |
| 1,1,1,2-Tetrachloroethane               | n/a         | BDL        |         |
|                                         |             | DDI        |         |
| Bromoform<br>41,43                      | n/a<br>n/a  | BDL<br>BDL |         |

Sample Location:027S000301 Lab File ID:NAS197.WKS Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

| Compound                              | Concen.<br>PID (ppb) | Concen.<br>Hall (ppb) | Blank<br>Concen. |
|---------------------------------------|----------------------|-----------------------|------------------|
| Computition                           | FID (ppb)            | riaii (ppb)           | CONCERT.         |
| Vinyl Chloride                        | BDL                  | BDL                   |                  |
| 1,1-Dichloroethene                    | BDL                  | BDL                   |                  |
| t-1,2-Dichloroethene                  | BDL                  | BDL                   |                  |
| c-1,2-Dichloroethene                  | BDL                  | BDL                   |                  |
| 1,1-Dichloropropene                   | BDL                  | BDL                   |                  |
| Benzene                               | BDL                  | n/a                   |                  |
| Trichloroethene                       | BDL                  | BDL                   |                  |
| c-1,3-Dichloropropene                 | BDL                  | BDL                   |                  |
| t-1,3-Dichloropropene                 | BDL                  | BDL                   |                  |
| Toluene                               | BDL                  | n/a                   |                  |
| Tetrachloroethene                     | BDL                  | BDL                   |                  |
| Chlorobenzene                         | BDL                  | BOL                   |                  |
| Ethylbenzene                          | BDL                  | n/a                   |                  |
| m,p-Xylenes                           | BDL                  | n/a                   |                  |
| Styrene                               | BDL                  | n/a                   |                  |
| o-Xylene                              | BDL                  | n/a                   |                  |
| BFB (surrogate)                       | 57.8                 | 40.6                  |                  |
| 40,42                                 | 5.8                  | n/a                   |                  |
| n-Propylbenzene                       | BDL                  | п/а                   |                  |
| 2-Chlorotoluene                       | BDL                  | BDL                   |                  |
| 4-Chlorotoluene                       | BDL                  | BDL                   |                  |
| 1,3,5-Trimethylbenzene                | BDL                  | n/a                   |                  |
| t-Butylbenzene                        | BDL                  | n/a                   |                  |
| 1,2,4-Trimethylbenzene                | BDL                  | n/a                   |                  |
| s-butylbenzene/1,3-DCB                | BDL                  | n/a                   |                  |
| 1,4-Dichlorobenzene                   | BDL                  | BDL                   |                  |
| p-IsopropyItoluene                    | BDL                  | n/a                   |                  |
| 1,2-Dichlorobenzene                   | BDL                  | BDL                   |                  |
| n-Butylbenzene                        | BDL                  | n/a                   |                  |
| 1,2,4-Trichlorobenzene                | BDL                  | BDL                   |                  |
| Naphthalene                           | BDL                  | n/a                   |                  |
| Hexachlorobutadiene                   | BDL                  | BDL                   |                  |
| 1,2,3-Trichlorobenzene                | BDL                  | BDL<br>BDL            |                  |
| Dichlorofluoromethane                 | n/a                  | BDL<br>BDL            |                  |
| Bromomethane<br>Chloroethane          | n/a<br>n/a           | BDL                   |                  |
| Chioroemane<br>Trichlorofluoromethane | n/a.                 | BDL.                  |                  |
| Methylenechloride                     | n/a                  | 17                    | 11               |
| 1,1-Dichloroethane                    | n/a                  | BDL                   | • •              |
| Bromochloromethane                    | n/a                  | BDL                   |                  |
| Chloroform                            | n/a                  | BDL                   |                  |
| 2,2-Dichloropropane                   | n/a                  | BDL                   |                  |
| 1,2-Dichloroethane                    | n/a                  | BDL                   |                  |
| 1,1,1-Trichloroethane                 | n/a                  | BDL                   |                  |
| Carbon Tetrachloride                  | n/a                  | BDL                   |                  |
| Dibromomethane                        | n/a                  | BDL                   |                  |
| 1,2-Dichloropropane                   | n/a                  | BDL                   |                  |
| Trichloroethene                       | n/a                  | BDL                   |                  |
| Bromodichloromethane                  | n/a                  | BDL                   |                  |
| 1,1,2-Trichloroethane                 | n/a                  | BDL                   |                  |
| 1,3-Dichloropropene                   | n/a                  | BDL                   |                  |
| Dibromochloromethane                  | n/a                  | BDL                   |                  |
| 1,2-dibromomethane                    | n/a                  | BDL                   |                  |
| 1,1,1,2-Tetrachioroethane             | n/a                  | BDL                   |                  |
| Bromoform                             | n/a                  | BDL                   |                  |
| 41,43                                 | n/a                  | BDL                   |                  |
| 1,2-Dibromo-3-chloropropene           | n/a                  | BDL                   |                  |

Sample Location:027S000306 Lab File ID:NAS206.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

ion.

| Compound                            | Concen.<br>PID (ppb) | Concen.<br>Hail (ppb) | Blank<br>Concen. |
|-------------------------------------|----------------------|-----------------------|------------------|
|                                     | , 15 (ppb)           | - iai (ppu)           |                  |
| Vinyl Chloride                      | BDL                  | BDL                   |                  |
| 1,1-Dichloroethene                  | BDL                  | BDL                   |                  |
| t-1,2-Dichloroethene                | BDL                  | BDL                   |                  |
| c-1,2-Dichloroethene                | BDL                  | BDL                   |                  |
| 1,1-Dichloropropene                 | BDL                  | BDL                   |                  |
| Benzene                             | BOL                  | n/a                   |                  |
| Trichloroethene                     | BDL                  | BDL                   |                  |
| c-1,3-Dichloropropene               | BDL                  | BDL                   |                  |
| t-1,3-Dichloropropene               | BDL                  | BDL                   |                  |
| Toluene                             | BDL                  | n/a                   |                  |
| Tetrachloroethene                   | BDL                  | BDL                   |                  |
| Chlorobenzene                       | BDL                  | BDL                   |                  |
| Ethylbenzene                        | BDL                  | n/a<br>,              |                  |
| m,p-Xylenes                         | BDL                  | n/a                   |                  |
| Styrene                             | BDL                  | n/a<br>-/-            |                  |
| o-Xylene<br>BFB (surrogate)         | BDL<br>71.7          | n/a<br>60.5           |                  |
| 40,42                               | BDL                  | n/a                   |                  |
| n-Propylbenzene                     | BDL                  | n/a<br>n/a            |                  |
| 2-Chlorotoluene                     | BDL                  | BOL                   |                  |
| 4-Chlorotoluene                     | BDL                  | BDL                   |                  |
| 1,3,5-Trimethylbenzene              | BDL                  | n/a                   |                  |
| t-Butylbenzene                      | BDL                  | n/a                   |                  |
| 1,2,4-Trimethylbenzene              | BDL                  | n/a                   |                  |
| s-butylbenzene/1,3-DCB              | BDL                  | n/a                   |                  |
| 1,4-Dichlorobenzene                 | BDL                  | BDL                   |                  |
| p-isopropyitoluene                  | BDL.                 | n/a                   |                  |
| 1,2-Dichlorobenzene                 | BDL                  | BDL                   |                  |
| n-Butylbenzene                      | BDL                  | n/a                   |                  |
| 1,2,4-Trichlorobenzene              | BDL                  | BDL                   |                  |
| Naphthalene                         | BDL                  | n/a                   |                  |
| Hexachlorobutadiene                 | BDL                  | BDL                   |                  |
| 1,2,3-Trichlorobenzene              | BDL                  | BOL                   |                  |
| Dichlorofluoromethane               | n/a                  | BDL                   |                  |
| Bromomethane                        | n/a                  | BDL                   |                  |
| Chloroethane                        | n/a                  | BDL                   |                  |
| Trichlorofluoromethane              | n/a                  | BDL                   |                  |
| Methylenechloride                   | n/a                  | 11                    | 11               |
| 1,1-Dichloroethane                  | n/a                  | BDL                   |                  |
| Bromochloromethane                  | n/a                  | BDL.                  |                  |
| Chloroform                          | n/a                  | BDL                   |                  |
| 2,2-Dichloropropane                 | n/a                  | BDL                   |                  |
| 1,2-Dichloroethane                  | n/a                  | BDL                   |                  |
| 1,1,1-Trichloroethane               | n/a                  | BDL                   |                  |
| Carbon Tetrachloride                | n/a                  | BDL                   |                  |
| Dibromomethane                      | n/a                  | BDL<br>BDL            |                  |
| 1,2-Dichloropropane Trichloroethene | n/a                  |                       |                  |
| Bromodichloromethane                | n/a<br>n/a           | BDL<br>BDL            |                  |
| 1,1,2-Trichloroethane               | n/a<br>n/a           | BDL                   |                  |
| 1,3-Dichloropropene                 | n/a                  | BDL                   |                  |
| Dibromochloromethane                | n/a<br>n/a           | BDL                   |                  |
| 1,2-dibromomethane                  | n/a                  | BDL                   |                  |
| 1,1,1,2-Tetrachloroethane           | n/a                  | BDL<br>BDL            |                  |
| Bromoform                           | n/a                  | BDL                   |                  |
| 41,43                               | п/а                  | BDL                   |                  |
| 1,2-Dibromo-3-chloropropene         | n/a                  | BDL                   |                  |

~ . 1 Sample Location:027S000312 Lab File ID:NAS199.001 Calibration Std.:vc0607.001

1,2-Dibromo-3-chtoropropene

Date: 06/07/95 Blank: blk0607.001 Dilution:

Concen. Concen. Blank PID (ppb) Hail (ppb) Concen. Compound Vinyl Chloride BDL BDL BDL 1,1-Dichloroethene BDL t-1,2-Dichloroethene BDL BDL c-1,2-Dichloroethene BDL BDL BDL BDL 1,1-Dichloropropene Benzene BDL n/a Trichloroethene BDL BDL BDL BDL c-1,3-Dichloropropene BOL. BDL t-1,3-Dichloropropene Toluene BDL n/a Tetrachloroethene BDL BDI BDL. BDL Chlorobenzene Ethylbenzene BDL n/a m,p-Xylenes BDL n/a BDL n/a Styrene **BDL** o-Xylene n/a 70.4 BFB (surrogate) 73.3 40,42 BDL n/a BDL n-Propyibenzene n/a 2-Chlorotoluene BDL BDL 4-Chlorotoluene BDL BDL 1,3,5-Trimethylbenzene BDL n/a t-Butylbenzene BDL n/a 1,2,4-Trimethylbenzene BDL n/a s-butylbenzene/1,3-DCB BDL n/a BDL BDL 1,4-Dichlorobenzene p-isopropyltoluene BDL n/a BDL BDL 1,2-Dichlorobenzene n-Butylbenzene BDL n/a 1,2,4-Trichlorobenzene BDL BDL BDL Naphthalene n/a BDL BDL Hexachlorobutadiene 1,2,3-Trichlorobenzene BDL BDL BDL Dichlorofluoromethane n/a BDL n/a Bromomethane BDL Chloroethane n/a Trichlorofluoromethane n/a BDL Methylenechloride 11 11 n/a 1.1-Dichloroethane BDL n/a Bromochloromethane n/a BDL BDL Chloroform n/a BDL 2,2-Dichloropropane n/a 1,2-Dichloroethane n/a BDL **BDL** 1,1,1-Trichloroethane n/a BDL Carbon Tetrachloride n/a BDL Dibromomethane n/a 1,2-Dichloropropane n/a BDL BDL Trichloroethene n/a BDL Bromodichloromethane n/a 1,1,2-Trichloroethane BDL n/a 1,3-Dichloropropene n/a BDL Dibromochloromethane n/a BDL BDL 1,2-dibromomethane n/a 1,1,1,2-Tetrachloroethane n/a BDL BDI Bromoform n/a 41,43 n/a BDL

n/a

BDL

Sample Location:027S000401 Lab File ID:NAS207.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

ution:

|                                              | Concen.      | Concen.    | Blank   |
|----------------------------------------------|--------------|------------|---------|
| Compound                                     | PID (ppb)    | Hall (ppb) | Concen. |
| Vinyl Chloride                               | BDL          | BDL        |         |
| 1,1-Dichloroethene                           | BDL          | BDL        |         |
| t-1,2-Dichloroethene                         | BDL          | BDL        |         |
| c-1,2-Dichloroethene                         | BDL          | BDL        |         |
| 1,1-Dichloropropene                          | BDL          | BDL        |         |
| Benzene                                      | BDL          | n/a        |         |
| Trichloroethene                              | BDL          | BDL        |         |
| c-1,3-Dichloropropene                        | BDL          | BDL        |         |
| t-1,3-Dichloropropene                        | BDL          | BDL        |         |
| Toluene                                      | BDL          | n/a        |         |
| Tetrachloroethene                            | BDL          | BDL        |         |
| Chlorobenzene                                | BDL          | BDL        |         |
| Ethylbenzene                                 | BDL          | n/a        |         |
| m,p-Xylenes                                  | BDL          | n/a        |         |
| Styrene                                      | BDL          | n/a        |         |
| o-Xylene                                     | BDL          | n/a        |         |
| BFB (surrogate)                              | 60.6         | 44.9       |         |
| 40,42                                        | BDL          | n/a        |         |
| n-Propylbenzene                              | BDL          | n/a        |         |
| 2-Chlorotoluene                              | BDL          | BDL        |         |
| 4-Chlorotoluene                              | BDL          | BDL        |         |
| 1,3,5-Trimethylbenzene                       | BDL          | n/a        |         |
| t-Butylbenzene                               | BDL          | n/a        |         |
| 1,2,4-Trimethylbenzene                       | BDL          | n/a        |         |
| s-butylbenzene/1,3-DCB                       | BDL          | n/a        |         |
| 1,4-Dichlorobenzene                          | BDL          | BDL        |         |
| p-Isopropyltoluene                           | BDL          | n/a        |         |
| 1,2-Dichlorobenzene                          | BDL          | BDL        |         |
| n-Butylbenzene                               | BDL          | n/a        |         |
| 1,2,4-Trichlorobenzene                       | BDL          | BDL        |         |
| Naphthalene                                  | BDL          | n/a        |         |
| Hexachlorobutadiene                          | BDL          | BDL        |         |
| 1,2,3-Trichlorobenzene                       | BDL          | BDL        |         |
| Dichlorofluoromethane                        | n/a          | BDL        |         |
| Bromomethane                                 | n/a          | BDL        |         |
| Chloroethane                                 | n/a          | BDL        |         |
| Trichtorofluoromethane                       | n/a          | BDL        |         |
| Methylenechloride                            | n/a          | 15-        | 11      |
| 1,1-Dichloroethane                           | n/a          | BDL        |         |
| Bromochloromethane                           | n/a          | BDL        |         |
| Chloroform                                   | n/a          | BDL        |         |
| 2,2-Dichloropropane                          | n/a          | BDL        |         |
| 1,2-Dichloroethane                           | n/a.         | BDL        |         |
| 1,1,1-Trichloroethane                        | n/a          | BDL        |         |
| Carbon Tetrachloride                         | n/a          | BDL        |         |
| Dibromomethane                               | n/ <b>a</b>  | BDL        |         |
| 1,2-Dichloropropane                          | n/a          | BDL        |         |
| Trichloroethene                              | n/a          | BDL        |         |
| Bromodichloromethane                         | n/a          | BDL        |         |
| 1,1,2-Trichloroethane                        | n/a          | BDL        |         |
| 1,3-Dichloropropene Dibromochloromethane     | n/a          | BDL        |         |
| 1,2-dibromomethane                           | n/a          | BDL        |         |
| 1,2-dibromomethane 1,1,1,2-Tetrachloroethane | n/a<br>n/a   | BDL<br>BDL |         |
| Bromoform                                    | n/a.<br>n/a. | BDL        |         |
| 41,43                                        | n/a.         | BDL        |         |
| 1,2-Dibromo-3-chloropropene                  | n/a          | BDL        |         |
| .,2 Dibrotto-o-cittoroproperie               | 11/4         | DDL        |         |

Sample Location:027S000406 Lab File ID:NAS203.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

n:

1

|                           | Concen.   | Concen.    | Blank  |
|---------------------------|-----------|------------|--------|
| Compound                  | PID (ppb) | Hall (ppb) | Concen |
| Vinyl Chloride            | BDL       | BDL        |        |
| 1,1-Dichloroethene        | BDL       | BDL        |        |
| t-1,2-Dichloroethene      | BDL       | BDL        |        |
| c-1,2-Dichloroethene      | BDL       | BDL.       |        |
| 1,1-Dichloropropene       | BDL       | BDL        |        |
| Benzene                   | BDL       | n/a        |        |
| Trichloroethene           | BDL       | BDL        |        |
| c-1,3-Dichloropropene     | BDL       | BDL        |        |
| t-1,3-Dichloropropene     | BDL       | BDL        |        |
| Toluene                   | BDL       | n/a        |        |
| Tetrachloroethene         | BDL       | BDL        |        |
| Chlorobenzene             | BDL       | BDL        |        |
| Ethylbenzene              | BDL       | n/a        |        |
| m,p-Xylenes               | BDL       | n/a        |        |
| Styrene                   | BDL       | n/a        |        |
| o-Xylene                  | 8DL       | n/a        |        |
| BFB (surrogate)           | 76        | 69.7       |        |
| 40,42                     | BDL       | n/a        |        |
| n-Propylbenzene           | BDL       | n/a        |        |
| 2-Chlorotoluene           | BDL       | BDL        |        |
| 4-Chlorotoluene           | BDL       | BDL        |        |
| 1,3,5-Trimethylbenzene    | BDL       | n/a        |        |
| t-Butylbenzene            | BDL       | n/a        |        |
| 1,2,4-Trimethylbenzene    | BDL       | n/a        |        |
| s-butylbenzene/1,3-DCB    | BDL       | n/a        |        |
| 1,4-Dichlorobenzene       | BDL       | BDL        |        |
| p-isopropyitoluene        | BDL       | n/a        |        |
| 1,2-Dichlorobenzene       | BDL       | BDL        |        |
| n-Butylbenzene            | BDL       | n/a        |        |
| 1,2,4-Trichlorobenzene    | BDL       | BDL        |        |
| Naphthalene               | BDL       | п/а        |        |
| Hexachlorobutadiene       | BDL       | BDL        |        |
| 1,2,3-Trichiorobenzene    | BDL       | BDL        |        |
| Dichlorofluoromethane     | n/a       | BDL        |        |
| Bromomethane              | n/a       | BDL        |        |
| Chloroethane              | n/a       | BDL        |        |
| Trichlorofluoromethane    | n/a       | BDL        |        |
| Methylenechloride         | n/a       | 1.1.       | 11     |
| 1,1-Dichloroethane        | n/a       | BDL        |        |
| Bromochloromethane        | n/a       | BDL        |        |
| Chloroform                | n/a       | BDL        |        |
| 2,2-Dichloropropane       | n/a       | BDL        |        |
| 1,2-Dichloroethane        | n/a       | BDL        |        |
| 1,1,1-Trichloroethane     | n/a       | BDL        |        |
| Carbon Tetrachloride      | n/a       | BDL        |        |
| Dibromomethane            | n/a       | BDL        |        |
| 1,2-Dichloropropane       | n/a       | BDL        |        |
| Trichloroethene           | n/a       | BDL        |        |
| Bromodichloromethane      | n/a       | BDL        |        |
| 1,1,2-Trichloroethane     | n/a       | BDL        |        |
| 1,3-Dichtoropropene       | n/a       | BDL        |        |
| Dibromochloromethane      | n/a.      | BDL        |        |
| 1,2-dibromomethane        | n/a       | BDL        |        |
| 1.1.1.2-Tetrachloroethane | n/a       | BDL        |        |
| Bromoform                 | n/a       | BDL        |        |
| 41,43                     | n/a       | BDL        |        |
| 11114                     | n/a       | BDL        |        |

Sample Location:027S000412 Lab File ID:NAS208.001 Calibration Std.:vc0607.001

Date: 06/07/95 Blank: blk0607.001 Dilution:

|                          | Concen.           | Concen.           | Blank   |
|--------------------------|-------------------|-------------------|---------|
| Compound                 | PID (ppb)         | Hall (ppb)        | Concen. |
| /inyl Chloride           | BDL               | BDL               |         |
| ,1-Dichloroethene        | BOL               | BOL               |         |
| -1,2-Dichloroethene      | BDL               | BDL               |         |
| :-1,2-Dichloroethene     | BDL               | BDL               |         |
| ,1-Dichloropropene       | BDL               | BDL               |         |
| Benzene                  | BDL               | n/a               |         |
| Frichloroethene          | BDL               | BDL               |         |
| :-1,3-Dichloropropene    | BDL               | BDL               |         |
| -1,3-Dichloropropene     | BDL               | BDL               |         |
| Toluene                  | BDL               | n/a               |         |
| Tetrachloroethene        | BDL               | BDL               |         |
| Chlorobenzene            | BDL               | BDL               |         |
| Ethylbenzene             | BDL               | n/a               |         |
| n,p-Xylenes              | BDL               | n/a               |         |
| Styrene                  | BDL               | n/a               |         |
| x-Xylene                 | BDL               | n/a               |         |
| BFB (surrogate)          | 70.8              | 64.9              |         |
| 10,42                    | BDL               | n/a               |         |
| n-Propylbenzene          | BDL               | n/a               |         |
| 2-Chlorotoluene          | BDL               | BDL               |         |
| 1-Chlorotoluene          | BDL               | BDL               |         |
| ,3,5-Trimethylbenzene    | BDL               | n/a               |         |
| -Butylbenzene            | BDL               | n/a               |         |
| ,2,4-Trimethylbenzene    | BDL               | n/a               |         |
| s-butylbenzene/1,3-DCB   | BDL               | n/a               |         |
| 4-Dichlorobenzene        | BDL               | BDL               |         |
| o-Isopropyltoluene       | BDL               | n/a               |         |
| ,2-Dichlorobenzene       | BDL               | BDL               |         |
| n-Butylbenzene           | BDL               | n/a               |         |
| ,2,4-Trichlorobenzene    | BDL               | BDL               |         |
| Naphthalene              | BDL               | n/a               |         |
| Hexachlorobutadiene      | BDL               | BDL               |         |
| .2.3-Trichlorobenzene    | BDL               | BDL               |         |
| Dichlorofluoromethane    | n/a               | BDL               |         |
| Bromomethane             | n/a               | BDL               |         |
| Chloroethane             | n/a               | BDL               |         |
| Frichtorofluoromethane   | n/a               | BDL               |         |
| Methylenechloride        | n/a               | 11.               | 11      |
| .1-Dichloroethane        | n/a               | BDL               |         |
| Bromochloromethane       | n/a               | BDL               |         |
| Chloroform               | n/a               | BDL               |         |
| 2,2-Dichloropropane      | n/a               | BDL               |         |
| ,2-Dichloroethane        | n/a               | BDL               |         |
| .1.1-Trichloroethane     | n/a               | BDL               |         |
| Carbon Tetrachloride     | n/a               | BDL               |         |
| Dibromomethane           | n/a               | BDL               |         |
| ,2-Dichloropropane       | n/a               | BDL               |         |
| richloroethene           | n/a               | BDL               |         |
| Bromodichloromethane     | n/a               | BDL               |         |
| 1,1,2-Trichloroethane    | n/a               | BDL               |         |
| ,3-Dichloropropene       | n/a               | BDL               |         |
| Dibromochloromethane     | n/a               | BDL               |         |
| ,2-dibromomethane        | n/a               | BDL               |         |
|                          | 11/4              |                   |         |
|                          | n/a               | RDI               |         |
| ,1,1,2-Tetrachloroethane | n/a<br>n/a        | BDL<br>BDI        |         |
|                          | n/a<br>n/a<br>n/a | BDL<br>BDL<br>BDL |         |

Sample Location:027S000501 Lab File ID:NAS204.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

ution:

1

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| t-1,3-Dichloropropene       | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 69.1      | 60.5       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| p-Isopropyitoluene          | BDL       | n/a        |         |
| 1,2-Dichtorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        | 4.4     |
| Methylenechloride           | n/a.      | BDL        | 11      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a.      | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL<br>BDL |         |
| Dibromomethane              | n/a       | BOL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BOL<br>BOL |         |
| 1,1,2-Trichloroethane       | n/a       |            |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a.      | BDL        |         |
| Bromoform                   | n/a.      | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:027S000506 Lab File ID:NAS201.001 Calibration Std.:vc0607.001

Date: 06/07/95 Blank: blk0607.001 Dilution:

|                                    | Concen.         | Concen.    | Blank   |
|------------------------------------|-----------------|------------|---------|
| Compound                           | PID (ppb)       | Hall (ppb) | Concen. |
|                                    | ( ( ( ) ( ) ( ) | (FF-)      |         |
| Vinyl Chloride                     | BDL             | BDL        |         |
| 1,1-Dichloroethene                 | BDL             | BDL        |         |
| t-1,2-Dichloroethene               | BDL             | BDL        |         |
| c-1,2-Dichloroethene               | BDL             | BDL        |         |
| 1,1-Dichloropropene                | BDL             | BDL        |         |
| Benzene                            | BDL             | n/a        |         |
| Trichloroethene                    | BDL             | BDL        |         |
| c-1,3-Dichloropropene              | BDL             | BDL        |         |
| t-1,3-Dichloropropene              | BDL             | BDL        |         |
| Toluene                            | BDL             | n/a        |         |
| Tetrachloroethene                  | BDL             | BDL        |         |
| Chlorobenzene                      | BDL             | BDL        |         |
| Ethylbenzene                       | BDL             | n/a        |         |
| m,p-Xylenes                        | BDL             | n/a        |         |
| Styrene                            | BDL             | n/a        |         |
| o-Xylene                           | BDL             | n/a        |         |
| BFB (surrogate)                    | 80.2            | 75.7       |         |
| 40,42                              | BDL             | n/a        |         |
| n-Propylbenzene                    | BDL             | n/a        |         |
| 2-Chlorotoluene                    | BDL             | BDL        |         |
| 4-Chlorotoluene                    | BDL             | BDL        |         |
| 1,3,5-Trimethylbenzene             | BDL             | n/a        |         |
| t-Butylbenzene                     | BDL             | n/a        |         |
| 1,2,4-Trimethylbenzene             | BDL             | n/a        |         |
| s-butylbenzene/1,3-DCB             | BDL             | n/a        |         |
| 1,4-Dichlorobenzene                | BDL             | BDL        |         |
| p-isopropyitoluene                 | BDL             | n/a        |         |
| 1,2-Dichlorobenzene                | BDL             | BDL        |         |
| n-Butylbenzene                     | BDL<br>BDL      | n/a<br>BDL |         |
| 1,2,4-Trichlorobenzene             | BDL             | n/a        |         |
| Naphthalene<br>Hexachlorobutadiene | BDL             | BDL        |         |
| 1,2,3-Trichlorobenzene             | BDL             | BDL        |         |
| Dichlorofluoromethane              | n/a             | BDL        |         |
| Bromomethane                       | n/a             | BDL        |         |
| Chloroethane                       | n/a             | BDL        |         |
| Trichlorofluoromethane             | n/a             | BDL        |         |
| Methylenechloride                  | n/a             | 11.        | 11      |
| 1,1-Dichloroethane                 | n/a             | BDL        |         |
| Bromochloromethane                 | n/a             | BDL        |         |
| Chloroform                         | n/a             | BDL        |         |
| 2,2-Dichloropropane                | n/a             | BDL        |         |
| 1,2-Dichloroethane                 | n/a             | BDL        |         |
| 1,1,1-Trichloroethane              | n/a.            | BDL        |         |
| Carbon Tetrachloride               | n/a             | BDL        |         |
| Dibromomethane                     | n/a             | BDL        |         |
| 1,2-Dichloropropane                | n/a             | BDL        |         |
| Trichloroethene                    | n/a             | 8DL        |         |
| Bromodichloromethane               | n/a             | 8DL        |         |
| 1,1,2-Trichloroethane              | n/a             | BDL        |         |
| 1,3-Dichloropropene                | n/a             | BDL        |         |
| Dibromochtoromethane               | n/a             | BDL        |         |
| 1,2-dibromomethane                 | n/a             | BDL        |         |
| 1,1,1,2-Tetrachloroethane          | n/a             | BDL        |         |
| Bromoform                          | n/a             | BDL        |         |
| 41,43                              | n/a             | BDL        |         |
| 1,2-Dibromo-3-chloropropene        | n/a             | BDL        |         |

#### HydroLogic Mobile Laboratory Analytical Data - Volatile Organic Compounds Memphis Naval Air Station

Sample Location:027S000512 Lab File ID:NAS202.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

| Vinyl Chloride  ,1-Dichloroethene -1,2-Dichloroethene -1,2-Dichloroethene -1,2-Dichloropropene Benzene Frichloroethene -1,3-Dichloropropene -1,3-Dichloropropene Fetrachloroethene -1,3-Dichloropropene Fetrachloroethene Entrylbenzene Entrylbenzene Entrylbenzene -2-Chlorobenzene -3-BB (surrogate) -3-Propylbenzene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Dichloropene - | PID (ppb)  3DL  3DL  3DL  3DL  3DL  3DL  3DL  3D                           | Hall (ppb)  BDL BDL BDL BDL BDL BDL BDL BDL BDL BD                                                                                                                                                              | Concen. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.1-Dichloroethene -1,2-Dichloroethene -1,2-Dichloroethene -1,2-Dichloropropene Benzene Frichloroethene -1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,3-Dichloropropene E-1,1-Dichloropropene E-1,1-Dichloropropene E-1,2-Vienes E-1,2-Vienes E-1,2-Vienes E-1,3-E-1,3-Dichloropropene E-1,2-1,3-Trimethylbenzene E-1,2-1,3-Trimethylbenzene E-1,2-1,3-Trimethylbenzene E-1,2-1,3-Trichlorobenzene E-1,3-Dichloropene E-1,3-Dichloropene E-1,3-Dichlorobenzene E-1,3-Dichlor | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | BDL BDL BDL n/a BDL BDL n/a BDL n/a BDL n/a                                                                                                                                 |         |
| -1,2-Dichloroethene -1,2-Dichloroethene -1,2-Dichloropropene Benzene Frichloroethene -1,3-Dichloropropene Foluene Fetrachloroethene -1,3-Dichloropropene Fetrachloroethene Chlorobenzene Ethylbenzene m,p-Xylenes Styrene -2-Xylene BFB (surrogate) -2-Chlorotoluene -3-Chlorotoluene -3-Chlorothane -3-Chlorofluoromethane -3-Chlorothane -3-Chlorothane -3-Chlorotoluene -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorotoluene -3-Chlorothane -3-Chlorotoluene -3-Chlorotolue | 3DL<br>3DL<br>3DL<br>3DL<br>3DL<br>3DL<br>3DL<br>3DL                       | BDL BDL n/a BDL BDL n/a BDL n/a BDL n/a                                                                                                                                     |         |
| 2-1,2-Dichloroethene 3-1,2-Dichloropropene 3-1,3-Dichloropropene 3-1,3-Dichloropropene 3-1,3-Dichloropropene 3-1,3-Dichloropropene 3-1,3-Dichloropropene 3-Dichloropropene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Styrene 3-Styrene 3-Styrene 3-Styrene 3-Styrene 3-Styrene 3-Chlorotoluene 3-Chlorotoluene 3-Chlorotoluene 3-Chlorotoluene 3-Chlorotoluene 3-Chlorotoluene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Styrichlorobenzene 3-Dichlorofluoromethane 3-Gromomethane 3-Grom | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | BDL BDL n/a BDL BDL n/a BDL BDL n/a BDL n/a n/a n/a n/a n/a n/a n/a n/a n/a BDL BDL n/a n/a BDL BDL n/a BDL n/a BDL BDL n/a BDL n/a BDL n/a BDL n/a BDL n/a BDL BDL n/a BDL |         |
| .1-Dichloropropene Genzene Frichloroethene -1,3-Dichloropropene Foliuene Fetrachloroethene Chlorobenzene Ethylbenzene Ethy | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | BDL n/a BDL BDL n/a BDL BDL n/a BDL n/a n/a n/a n/a n/a n/a n/a n/a BDL n/a BDL n/a                                                                 |         |
| Genzene  Frichloroethene Frichloroethene Frichloropropene Frichloropropene Frichloroethene Frichlorobenzene Fetrachloroethene Chlorobenzene Ethylbenzene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorotoluene Frichlorotoluene Frichlorotoluene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorobenzene Frichlorofluoromethane Frichlorofluoromethane Frichlorotoluene Frichlorotoluene Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorobenzene Frichlorobenzene Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichloroform Frich | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | n/a BDL BDL n/a BDL n/a BDL n/a n/a n/a n/a 75.3 n/a n/a BDL n/a a BDL n/a BDL n/a BDL n/a BDL n/a n/a BDL n/a BDL n/a                                                                                          |         |
| Frichloroethene 2-1,3-Dichloropropene 3-1,3-Dichloropropene Foluene Fetrachloroethene Chlorobenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylopropene Ethylbenzene Ethylben | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | BDL BDL n/a BDL n/a BDL n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a a BDL n/a n/a BDL n/a n/a BDL n/a n/a                                                                                                          |         |
| 2-1,3-Dichloropropene 2-1,3-Dichloropropene Foluene Foluene Foluene Foluene Foliopene Foliopene Ethylbenzene  | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | BDL BDL n/a BDL n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a BDL n/a n/a n/a BDL n/a n/a                                                                                                                        |         |
| -1,3-Dichloropropene Foluene Foluene Fetrachloroethene Chlorobenzene Ethylbenzene In,p-Xylenes Styrene D-Xylene SFB (surrogate) IO,42 In-Propylbenzene I-Chlorotoluene I-Chlorotoluene I-Chlorotoluene II,3,5-Trimethylbenzene II,2,4-Trimethylbenzene II,2-Dichlorobenzene II,2-Dichlorobenzene II,2-J-Trichlorobenzene II,2,3-Trichlorobenzene II,2,3-Trichlorobenzene III,2,3-Trichlorobenzene III,2,3-Trichlorobenzene IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | BDL n/a BDL n/a n/a n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a BDL n/a n/a BDL n/a n/a BDL n/a BDL n/a                                                                                                |         |
| Foluene Fetrachloroethene Chlorobenzene Ethylbenzene Ethylbenzene En,p-Xylenes Styrene D-Xylene SFB (surrogate) Foliorotoluene | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL                       | n/a BDL n/a n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a BDL n/a n/a BDL n/a BDL n/a BDL n/a BDL                                                                                                        |         |
| Fetrachloroethene Chlorobenzene Ethylbenzene Ethylbenzene En,p-Xylenes Styrene D-Xylene SFB (surrogate) FF (sur | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL         | BDL n/a n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a BDL n/a n/a BDL n/a n/a BDL                                                                                                                    |         |
| Chlorobenzene Ethylbenzene In,p-Xylenes Styrene Styren | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL         | BDL n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a BDL n/a n/a BDL n/a BDL n/a BDL                                                                                                                    |         |
| Ethylbenzene  m.p-Xylenes  Styrene  D-Xylene  SEB (surrogate)  10,42  E-Chlorotoluene  1-Chlorotoluene  1-Sutylbenzene  E-Butylbenzene  1-Sutylbenzene  1-Suty | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL         | n/a n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a BDL n/a n/a BDL                                                                                                                                        |         |
| m.p-Xylenes Styrene St | 8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL<br>8DL         | n/a n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a n/a BDL n/a BDL                                                                                                                                            |         |
| Styrene Styrene Styrene Stylene Stylen | 80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L         | n/a n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a n/a BDL n/a BDL n/a BDL                                                                                                                                        |         |
| p-Xylene 3FB (surrogate) 30,42 510,42 52-Chlorotoluene 53-Chlorotoluene 54-Chlorotoluene 54-Chlorotoluene 54-Chlorotoluene 54-Chlorotoluene 65-Butylbenzene 66-Butylbenzene 67-Butylbenzene 67-Chlorobenzene 68-Butylbenzene/1,3-DCB 68-Butylbenzene/1,3-DCB 68-Butylbenzene 69-Chlorobenzene 69-Chlorobenzene 69-Chlorobenzene 69-Chlorobenzene 69-Chlorobenzene 69-Chlorobenzene 69-Chlorobenzene 69-Chlorofluoromethane 69-Chloroethane 69-Chloroethane 69-Chlorobethane 69-Chlorobethane 69-Chlorobethane 69-Chlorofluoromethane 69-Chlorofluoromethane 69-Chlorofluoromethane 69-Chlorofluoromethane 69-Chlorofluoromethane 69-Chlorofluoromethane 69-Chlorofluoromethane 69-Chloroform 69-Ch | 80L<br>83.3<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L | n/a 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a n/a BDL n/a BDL n/a BDL                                                                                                                                            |         |
| 3FB (surrogate) 30,42 510,42 52-Chlorotoluene 53-Chlorotoluene 54-Chlorotoluene 54-Chlorotoluene 54-Chlorotoluene 55-Butylbenzene 55-Butylbenzene 55-Butylbenzene 56-Butylbenzene 57-Chlorobenzene 58-Butylbenzene 58-Butylbenzene 59-Isopropyltoluene 69-Isopropyltoluene | 78.3<br>30L<br>30L<br>30L<br>30L<br>30L<br>30L<br>30L<br>30L<br>30L<br>30  | 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a BDL n/a BDL n/a BDL                                                                                                                                                    |         |
| 3FB (surrogate) 30,42 50,42 510,42 52-Chlorotoluene 53-Chlorotoluene 64-Chlorotoluene 65-Chlorotoluene 65-Butylbenzene 65-Butylbenzene 65-Butylbenzene 65-Butylbenzene 65-Butylbenzene 66-Butylbenzene 67-Butylbenzene 68-Butylbenzene 69-Isopropyltoluene 69-Isopropyltol | 80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L                | 75.3 n/a n/a BDL BDL n/a n/a n/a n/a n/a BDL n/a BDL n/a BDL                                                                                                                                                    |         |
| an-Propylbenzene 2-Chlorotoluene 3-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 5-Butylbenzene 1,2,4-Trimethylbenzene 8-butylbenzene/1,3-DCB 1,4-Dichlorobenzene 1,2-Dichlorobenzene 8-Butylbenzene 1,2-Dichlorobenzene 8-Butylbenzene 1,2-Dichlorobenzene 8-Butylbenzene 1,2-Trichlorobenzene 1,2,4-Trichlorobenzene 8-Butylbenzene 1,2,4-Trichlorobenzene 8-Butylbenzene 1,2,4-Trichlorobenzene 8-Butylbenzene 1,2-Trichlorobenzene 1,2-Trichlorobenzene 1,1-Trichlorobenzene 1,2-Trichlorobenzene 1,2-Tr | 80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L                | n/a<br>BDL<br>BDL<br>n/a<br>n/a<br>n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                     |         |
| n-Propylbenzene 2-Chlorotoluene 3-Chlorotoluene 3-Chlorotoluene 4-Chlorotoluene 4-Sutylbenzene 5-Butylbenzene 6-Butylbenzene 6-Butylbenzene/1,3-DCB 6-L-Dichlorobenzene 6-Disopropyltoluene 6-Chlorobenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Chlorobenzene 6-Chlorobenzene 6-Chlorofluoromethane 6-Chloroform 6-Chloro | 80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L                | n/a<br>BDL<br>BDL<br>n/a<br>n/a<br>n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                     |         |
| 2-Chlorotoluene 3-Chlorotoluene 4-Chlorotoluene 5-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene 6-Butylbenzene/1,3-DCB 6-L-Dichlorobenzene 6-Butylbenzene 6-But | 80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L<br>80L                       | BDL<br>n/a<br>n/a<br>n/a<br>n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                            |         |
| A-Chlorotoluene  1,3,5-Trimethylbenzene  -Butylbenzene  1,2,4-Trimethylbenzene  8-butylbenzene/1,3-DCB  1,4-Dichlorobenzene  -Isopropyltoluene  1,2-Dichlorobenzene  1,2,4-Trichlorobenzene  8-butylbenzene  1,2,4-Trichlorobenzene  1,2,4-Trichlorobenzene  1,2,3-Trichlorobenzene  1,2,3-Trichlorobenzene  1,2,3-Trichlorobenzene  1,2,3-Trichlorobenzene  1,2,1-Dichloromethane  1,1-Dichloroethane  1,1-Dichloroethane  1,1-Dichloroethane  1,2-Dichloroptopopane  1,2-Dichloroptopopane  1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BOL<br>BOL<br>BOL<br>BOL<br>BOL<br>BOL<br>BOL                              | BDL n/a n/a n/a n/a BDL n/a BDL                                                                                                                                                                                 |         |
| 1,3,5-Trimethylbenzene -Butylbenzene 1,2,4-Trimethylbenzene 8-butylbenzene/1,3-DCB 1,4-Dichlorobenzene 0-Isopropyltoluene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 8-butylbenzene 1,2,4-Trichlorobenzene 8-butylbenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 0-Ichlorofluoromethane 1,2,3-Trichlorobenzene 0-Ichlorofluoromethane 1,1-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloromethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloroethane 1,2-Dichlo | BDL<br>BDL<br>BDL<br>BDL<br>BDL<br>BDL                                     | n/a<br>n/a<br>n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                                          |         |
| -Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDL<br>BDL<br>BDL<br>BDL<br>BDL<br>BDL                                     | n/a<br>n/a<br>n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                                          |         |
| 1,2,4-Trimethylbenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,1,3-Trichlorobenzene 1,1,1-Trichlorobenzene 1,1,1-Trichlorobenzene 1,1,1-Trichlorobenzene 1,1-Trichlorobenzene 1,1-Dichloromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloropropane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroetha | BDL<br>BDL<br>BDL<br>BDL                                                   | n/a<br>n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                                                 |         |
| S-butylbenzene/1,3-DCB  1,4-Dichlorobenzene  2,2-Dichlorobenzene  3,2,4-Trichlorobenzene  4,2,4-Trichlorobenzene  5,2,4-Trichlorobenzene  6,2,3-Trichlorobenzene  6,2,3-Trichlorobenzene  7,1,3-Trichlorobenzene  8,1,2,3-Trichlorobenzene  9,1,2,3-Trichlorobenzene  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDL<br>BDL<br>BDL<br>BDL                                                   | n/a<br>BDL<br>n/a<br>BDL                                                                                                                                                                                        |         |
| 1,4-Dichlorobenzene 2-Isopropyltoluene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 2-Isopropyltoluene 3-Isopropyltoluene | BDL<br>BDL<br>BDL<br>BDL                                                   | BDL<br>n/a<br>BDL                                                                                                                                                                                               |         |
| p-Isopropyltoluene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,1,0-Oichloromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloroethane 1, | BDL<br>BDL<br>BDL                                                          | n/ <b>a</b><br>BDL                                                                                                                                                                                              |         |
| 1,2-Dichlorobenzene 1-Butylbenzene 1-Butylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,1-Dichloromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloroethane 1,2-Dichloroetha | BDL<br>BDL                                                                 | BDL                                                                                                                                                                                                             |         |
| n-Butylbenzene E 1,2,4-Trichlorobenzene E Naphthalene E Hexachlorobutadiene E 1,2,3-Trichlorobenzene E Dichlorofluoromethane r Chloroethane r Methylenechloride r 1,1-Dichloroethane r Chloroform r 2,2-Dichloropropane r 1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BDL                                                                        |                                                                                                                                                                                                                 |         |
| 1,2,4-Trichlorobenzene  Naphthalene Hexachlorobutadiene 1,2,3-Trichlorobenzene Dichlorofluoromethane Chloroethane Frichlorofluoromethane Methylenechloride 1,1-Dichloroethane Chloroform Chloroform Chloroform Chloroform Chloropropane Chloropropane Chlorocethane Chloroform Chloropropane Chlorocethane Chloroform Chloropropane Chloroforomethane Chloroform Chloroform Chloropropane Chloroforomethane Chloroform Chloropropane Chloroforomethane Chloroforomethane Chloroforomethane Chloroforomethane Chloroforomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                                                                                                                                                                                 |         |
| Naphthalene E Hexachlorobutadiene E 1,2,3-Trichlorobenzene E Dichlorofluoromethane r Gromomethane r Chloroethane r Methylenechloride r 1,1-Dichloroethane r Chloroform r 2,2-Dichloropropane r 1,2-Dichloroethane r 1,2-Dichloroethane r 1,2-Dichloroethane r 1,2-Dichloroethane r 1,2-Dichloroethane r 1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | BDL                                                                                                                                                                                                             |         |
| Hexachlorobutadiene  1,2,3-Trichlorobenzene  Dichlorofluoromethane  Chloroethane  Frichlorofluoromethane  Methylenechloride  1,1-Dichloroethane  Chloroform  Chloroform  1,2-Dichloropropane  1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL                                                                        | n/a                                                                                                                                                                                                             |         |
| 1,2,3-Trichlorobenzene  Dichlorofluoromethane  Gromomethane  Chloroethane  Frichlorofluoromethane  Methylenechloride  1,1-Dichloroethane  Gromochloromethane  Chloroform  1,2-Dichloropropane  1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BDL                                                                        | BDL                                                                                                                                                                                                             |         |
| Dichlorofluoromethane  Gromomethane  Chloroethane  Frichlorofluoromethane  Methylenechloride  1,1-Dichloroethane  Gromochloromethane  Chloroform  1,2-Dichloropropane  1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDL                                                                        | BDL                                                                                                                                                                                                             |         |
| Gromomethane r Chloroethane r Crichlorofluoromethane r Methylenechloride r I,1-Dichloroethane r Gromochloromethane r Chloroform r 2,2-Dichloropropane r I,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/a                                                                        | BOL                                                                                                                                                                                                             |         |
| Chloroethane r  Trichlorofluoromethane r  Methylenechloride r  1,1-Dichloroethane r  Bromochloromethane r  Chloroform r  2,2-Dichloropropane r  1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/a                                                                        | BDL                                                                                                                                                                                                             |         |
| Frichlorofluoromethane r Methylenechloride r 1,1-Dichloroethane r Bromochloromethane r Chloroform r 2,2-Dichloropropane r 1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/a<br>1/a                                                                 | BDL                                                                                                                                                                                                             |         |
| Methylenechloride r 1,1-Dichloroethane r Bromochloromethane r Chloroform r 2,2-Dichloropropane r 1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/a<br>1/a                                                                 | BDL                                                                                                                                                                                                             |         |
| 1,1-Dichloroethane r<br>Bromochloromethane r<br>Chloroform r<br>2,2-Dichloropropane r<br>1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/a<br>1/a                                                                 | 11                                                                                                                                                                                                              | 11      |
| Bromochloromethane r Chloroform r 2,2-Dichloropropane r ,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/a<br>1/a                                                                 | BDL                                                                                                                                                                                                             |         |
| Chloroform r<br>2,2-Dichloropropane r<br>1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/a<br>1/a                                                                 | BDL<br>BDL                                                                                                                                                                                                      |         |
| 2,2-Dichloropropane r<br>1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/a<br>1/a                                                                 | BDL<br>BDL                                                                                                                                                                                                      |         |
| 1,2-Dichloroethane r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/a<br>1/a                                                                 | BDL<br>BDL                                                                                                                                                                                                      |         |
| l 1 1- irichioroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/a<br>1/a                                                                 | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/a.<br>1/a.                                                               | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/a<br>1/a                                                                 | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/a<br>1/a                                                                 | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/a<br>1/a                                                                 |                                                                                                                                                                                                                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a                                                                        | BDL<br>BDL                                                                                                                                                                                                      |         |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/a                                                                        |                                                                                                                                                                                                                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/a                                                                        |                                                                                                                                                                                                                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı/a                                                                        | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a<br>n/a                                                                 | BDL                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a<br>n/a<br>n/a                                                          | BDL<br>BDL                                                                                                                                                                                                      |         |
| 11,43 r<br>I,2-Dibromo-3-chloropropene r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/a<br>n/a<br>n/a<br>n/a                                                   | BDL                                                                                                                                                                                                             |         |

Sample Location:027G000545 Lab File ID:NAS198.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

ion:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hali (ppb) | Concen. |
| <br>Viny! Chloride          | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BOL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| t-1,3-Dichtoropropene       | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BOL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 82.7      | 84.5       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BOL       | n/a        |         |
| t-Butylbenzene              | BOL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BOL       | BDL        |         |
| p-Isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechloride           | n/a       | BDL        | 11      |
| 1,1-Dichtoroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL.       |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichtoroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachioroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:027S000601 Lab File ID:NAS210.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

on:

|                            | Concen.    | Concen.       | Blank   |
|----------------------------|------------|---------------|---------|
| Compound                   | PłD (ppb)  | Hall (ppb)    | Concen. |
| /inyl Chloride             | BDL        | BDL           | -       |
| ,1-Dichloroethene          | BDL        | BDL           |         |
| -1,2-Dichloroethene        | BDL        | BDL           |         |
| -1,2-Dichloroethene        | BDL        | BDL           |         |
| ,1-Dichloropropene         | BDL        | BDL           |         |
| Benzene                    | BDL        | n/a           |         |
| richloroethene             | 8DL        | BDL           |         |
| -1,3-Dichloropropene       | BDL        | BDL           |         |
| -1,3-Dichloropropene       | BDL        | BDL           |         |
| oluene                     | BDL        | n/a           |         |
| etrachloroethene           | BDL        | BDL           |         |
| Chlorobenzene              | BDL        | BDL           |         |
| thylbenzene                | BDL        | n/a           |         |
| n,p-Xylenes                | BDL        | n/a           |         |
| Styrene                    | BDL        | n/a           |         |
| -Xylene                    | BOL        | n/a           |         |
| -xylene<br>SFB (surrogate) | 51.1       | 71/a.<br>34.1 |         |
| , = :                      | BDL        |               |         |
| 0,42                       | BDL        | n/a<br>n/a    |         |
| -Propyibenzene             |            |               |         |
| 2-Chlorotoluene            | BDL        | BDL           |         |
| I-Chlorotoluene            | BDL        | BDL<br>n/n    |         |
| ,3,5-Trimethylbenzene      | BDL        | n/a.          |         |
| -Butylbenzene              | BDL        | n/a<br>·      |         |
| ,2,4-Trimethylbenzene      | BDL        | n/a<br>·      |         |
| -butylbenzene/1,3-DCB      | BDL        | n/a           |         |
| ,4-Dichlorobenzene         | BDL        | BDL           |         |
| -Isopropyltoluene          | BDL        | n/a           |         |
| ,2-Dichlorobenzene         | BDL        | BDL           |         |
| -Butylbenzene              | BDL        | n/a           |         |
| ,2,4-Trichlorobenzene      | BDL        | BDL           |         |
| Naphthalene                | BDL        | n/a           |         |
| lexachlorobutadiene        | BDL        | BDL           |         |
| ,2,3-Trichlorobenzene      | BDL        | BDL           |         |
| Dichlorofluoromethane      | n/a        | BDL           |         |
| 3romomethane               | n/a        | BDL           |         |
| Chloroethane               | n/a        | BDL           |         |
| Frichlorofluoromethane     | n/a        | BDL           |         |
| Methylenechloride          | n/a        | 16.           | 11      |
| ,1-Dichloroethane          | n/a        | BDL           |         |
| Bromochloromethane         | n/a        | BDL           |         |
| Chloroform                 | n/a        | BDL           |         |
| 2,2-Dichloropropane        | n/a        | BDL           |         |
| ,2-Dichloroethane          | n/a        | BDL           |         |
| .1.1-Trichloroethane       | n/a        | BDL           |         |
| Carbon Tetrachloride       | n/a        | BDL           |         |
| Dibromomethane             | n/a        | BDL           |         |
| ,2-Dichloropropane         | n/a        | BDL           |         |
| richloroethene             | n/a        | BDL           |         |
| Bromodichloromethane       | n/a        | BDL           |         |
| ,1,2-Trichloroethane       | n/a        | BDL           |         |
|                            | n/a        | BDL           |         |
| I,3-Dichloropropene        | n/a<br>n/a | BDL           |         |
| Dibromochloromethane       |            |               |         |
| 1,2-dibromomethane         | n/a        | BDL           |         |
| 1,1,1,2-Tetrachloroethane  | n/a        | BDL           |         |
| Bromoform                  | n/a        | BDL           |         |
| 11,43                      | n/a        | BDL           |         |
| ,2-Dibromo-3-chloropropene | n/a        | BDL           |         |

Sample Location:027S000608 Lab File ID:NAS211.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

|                             | Concen.     | Concen.    | Blank   |
|-----------------------------|-------------|------------|---------|
| Compound                    | PID (ppb)   | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL         | BDL        |         |
| I,1-Dichloroethene          | BDL         | BDL        |         |
| -1,2-Dichloroethene         | BDL         | BDL        |         |
| c-1,2-Dichloroethene        | BDL         | BDL        |         |
| 1,1-Dichloropropene         | BOL         | BDL        |         |
| Benzene                     | BDL         | n/a        |         |
| Trichloroethene             | BDL         | BDL        |         |
| c-1,3-Dichloropropene       | BDL         | BDL        |         |
| -1,3-Dichloropropene        | BDL         | BDL        |         |
| Toluene                     | BDL         | n/a        |         |
| Tetrachloroethene           | BDL         | BDL        |         |
| Chlorobenzene               | BDL         | BDL        |         |
| Ethylbenzene                | BDL         | n/a        |         |
| m,p-Xylenes                 | BDL         | n/a        |         |
| Styrene                     | BOL         | n/a        |         |
| o-Xylene                    | BDL         | n/a        |         |
| BFB (surrogate)             | 66.4        | 58.1       |         |
| 40,42                       | 41.1        | n/a        |         |
| n-Propylbenzene             | BDL         | n/a        |         |
| 2-Chlorotoluene             | BDL         | BOL        |         |
| 4-Chiorotoluene             | BOL         | BOL        |         |
| 1,3,5-Trimethylbenzene      | BDL         | n/a        |         |
| t-Butylbenzene              | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL         | n/a        |         |
| 1,4-Dichlorobenzene         | BDL         | BDL        |         |
| p-isopropyitoluene          | BDL         | n/a        |         |
| 1,2-Dichlorobenzene         | BDL         | BDL        |         |
| n-Butylbenzene              | BDL         | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL         | BDL        |         |
| Naphthalene                 | BDL         | n/a        |         |
| Hexachiorobutadiene         | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL         | BDL        |         |
| Dichlorofluoromethane       | n/a         | BDL        |         |
| Bromomethane                | n/a         | BDL        |         |
| Chloroethane                | n/a         | BDL        |         |
| Trichlorofluoromethane      | n/a         | BDL        |         |
| Methylenechloride           | n/a         | 11.        | 11      |
| 1,1-Dichloroethane          | n/a         | BDL        |         |
| Bromochioromethane          | n/a         | BDL        |         |
| Chloroform                  | n/a         | BDL.       |         |
| 2,2-Dichloropropane         | n/a         | BDL        |         |
| 1,2-Dichloroethane          | n/a         | BDL        |         |
| 1,1,1-Trichloroethane       | n/a         | BDL        |         |
| Carbon Tetrachloride        | n/a         | BDL        |         |
| Dibromomethane              | n/a         | BDL        |         |
| 1,2-Dichloropropane         | n/a         | BDL        |         |
| Trichloroethene             | n/ <b>a</b> | BDL        |         |
| Bromodichloromethane        | n/a         | BDL        |         |
| 1,1,2-Trichloroethane       | n/a         | BDL        |         |
| 1,3-Dichtoropropene         | n/a         | BDL        |         |
| Dibromochloromethane        | n/a         | BDL        |         |
| 1,2-dibromomethane          | n/a         | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a         | BDL        |         |
| Bromoform                   | n/a         | BDL        |         |
| 41,43                       | n/a         | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a         | BDL        |         |

Sample Location:027S000612 Lab File ID:NAS209A.001 Calibration Std.:vc0608.001 Date: 06/08/95 Blank: blk0608.001 Dilution:

on:

|                             | Concen.   | Concen.    | Blank                                 |
|-----------------------------|-----------|------------|---------------------------------------|
| Compound                    | PID (ppb) | Hail (ppb) | Concen.                               |
| Vinyl Chloride              | BDL       | BDL        | · · · · · · · · · · · · · · · · · · · |
| 1,1-Dichloroethene          | BDL       | BDL        |                                       |
| t-1,2-Dichloroethene        | BDL       | BDL        |                                       |
| c-1,2-Dichloroethene        | BDL       | BDL        |                                       |
| 1,1-Dichloropropene         | BDL       | BDL        |                                       |
| Benzene                     | BDL       | n/a        |                                       |
| Trichloroethene             | BDL       | BDL        |                                       |
| c-1,3-Dichloropropene       | BOL       | BDL        |                                       |
| t-1,3-Dichloropropene       | BDL       | BDL        |                                       |
| Toluene                     | BDL       | n/a        |                                       |
| Tetrachloroethene           | BDL       | BDL        |                                       |
| Chlorobenzene               | BDL       | BDL        |                                       |
| Ethylbenzene                | BDL       | n/a        |                                       |
| m,p-Xylenes                 | BDL       | n/a        |                                       |
| Styrene                     | BDL       | n/a        |                                       |
| o-Xylene                    | BDL       | n/a        |                                       |
| BFB (surrogate)             | 81.1      | 72.8       |                                       |
| 40,42                       | BDL       | n/a        |                                       |
| n-Propylbenzene             | BDL       | n/a        |                                       |
| 2-Chlorotoluene             | BDL       | BDL        |                                       |
| 4-Chlorotoluene             | BDL       | BDL        |                                       |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |                                       |
| t-Butylbenzene              | BDL       | n/a        |                                       |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |                                       |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |                                       |
| 1,4-Dichlorobenzene         | BDL       | BDL        |                                       |
| p-Isopropyitoluene          | BDL       | n/a        |                                       |
| 1,2-Dichlorobenzene         | BDL       | BDL        |                                       |
| n-Butylbenzene              | BDL       | n/a        |                                       |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |                                       |
| Naphthalene                 | BDL       | n/a        |                                       |
| Hexachlorobutadiene         | BDL       | BDL        |                                       |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |                                       |
| Dichlorofluoromethane       | n/a       | BDL        |                                       |
| Bromomethane                | n/a       | BDL        |                                       |
| Chloroethane                | n/a       | BDL        |                                       |
| Trichlorofluoromethane      | n/a       | BDL        |                                       |
| Methylenechloride           | n/a       | BQL        | 11                                    |
| 1,1-Dichloroethane          | n/a       | BDL        |                                       |
| Bromochloromethane          | n/a       | BDL        |                                       |
| Chloroform                  | n/a       | BDL        |                                       |
| 2,2-Dichloropropane         | n/a       | BDL        |                                       |
| 1,2-Dichloroethane          | n/a       | BDL        |                                       |
| 1,1,1-Trichloroethane       | n/a       | BDL        |                                       |
| Carbon Tetrachloride        | n/a       | BDL        |                                       |
| Dibromomethane              | n/a       | BDL        |                                       |
| 1,2-Dichloropropane         | n/a       | BDL        |                                       |
| Trichloroethene             | n/a       | BDL        |                                       |
| Bromodichloromethane        | n/a       | BDL        |                                       |
| 1,1,2-Trichloroethane       | n/a       | BOL        |                                       |
| 1,3-Dichloropropene         | n/a       | BDL        |                                       |
| Dibromochloromethane        | n/a       | BDL        |                                       |
| 1,2-dibromomethane          | n/a       | BDL        |                                       |
| 1,1,1,2-Tetrachioroethane   | n/a       | BDL        |                                       |
| Bromoform                   | n/a       | BDL        |                                       |
| 41,43                       | n/a       | BDL        |                                       |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |                                       |

Sample Location:027G000644 Lab File ID:NAS200.001 Calibration Std.:vc0607.001

Date: 06/07/95 Blank: blk0607.001 Dilution:

on:

| 0                         | Concen.     | Concen.    | Blank   |
|---------------------------|-------------|------------|---------|
| Compound                  | PID (ppb)   | Hall (ppb) | Concen. |
| Vinyl Chloride            | BDL         | BDL        | ·       |
| 1,1-Dichloroethene        | 80L         | BDL        |         |
| t-1,2-Dichloroethene      | BDL         | BDL        |         |
| c-1,2-Dichloroethene      | BDL         | BDL        |         |
| 1,1-Dichloropropene       | BDL         | BDL        |         |
| Benzene                   | BDL         | n/a        |         |
| Trichloroethene           | BDL         | BDL        |         |
| c-1,3-Dichloropropene     | BDL         | BDL        |         |
| t-1,3-Dichloropropene     | BDL         | BDL        |         |
| Toluene                   | BDL         | n/a        |         |
| Tetrachioroethene         | BDL         | BDL        |         |
| Chlorobenzene             | BDL         | BDL        |         |
| Ethylbenzene              | BDL         | n/a        |         |
| m,p-Xylenes               | BDL         | n/a        |         |
| Styrene                   | BDL         | n/a        |         |
| o-Xylene                  | BDL         | n/a        |         |
| BFB (surrogate)           | 81.5        | 86.9       |         |
| 40,42                     | BDL         | n/a        |         |
| n-Propylbenzene           | BDL         | n/a        |         |
| 2-Chlorotoluene           | BDL         | BDL        |         |
| 4-Chiorotoluene           | BDL         | BDL        |         |
| 1,3,5-Trimethylbenzene    | BDL         | n/a        |         |
| t-Butylbenzene            | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene    | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB    | BDL         | n/a        |         |
| 1,4-Dichlorobenzene       | BOL         | BDL        |         |
| p-isopropyltoluene        | BDL         | n/a        |         |
| 1,2-Dichlorobenzene       | BDL         | BDL        |         |
| n-Butylbenzene            | BDL         | n/a        |         |
| 1,2,4-Trichlorobenzene    | BDL         | BDL        |         |
| Naphthalene               | BDL         | n/a        |         |
| Hexachlorobutadiene       | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene    | BDL         | BDL        |         |
| Dichlorofluoromethane     | n/a         | BDL        |         |
| Bromomethane              | n/a         | 8DL        |         |
| Chloroethane              | n/a         | BDL        |         |
| Trichlorofluoromethane    | n/a         | BDL        |         |
| Methylenechloride         | n/a         | BQL        | 11      |
| 1,1-Dichloroethane        | n/a.        | BDL        |         |
| Bromochloromethane        | n/a         | BDL        |         |
| Chloroform                | n/a         | BDL        |         |
| 2,2-Dichloropropane       | n/a         | BOL        |         |
| 1,2-Dichloroethane        | n/a         | BDL        |         |
| 1,1,1-Trichloroethane     | n/a         | BDL        |         |
| Carbon Tetrachloride      | n/a<br>- /- | BDL        |         |
| Dibromomethane            | n/a         | BDL        |         |
| 1,2-Dichloropropane       | n/a         | BDL        |         |
| Trichloroethene           | n/a         | BDL        |         |
| Bromodichloromethane      | n/a         | BDL        |         |
| 1,1,2-Trichloroethane     | n/a         | BDL        |         |
| 1,3-Dichloropropene       | n/a         | BDL        |         |
| Dibromochloromethane      | n/a         | BDL        |         |
| 1,2-dibromomethane        | n/a         | BDL        |         |
| 1,1,1,2-Tetrachloroethane | n/a         | BDL        |         |
| D 4                       |             |            |         |
| Bromoform<br>41,43        | n/a<br>n/a  | BDL<br>BDL |         |

" . 1 Sample Location:027S000701 Lab File ID:NAS212.001 Calibration Std.:vc0607.001 Date: 06/07/95 Blank: blk0607.001 Dilution:

tion:

|                                             | Concen.     | Concen.    | Blank   |
|---------------------------------------------|-------------|------------|---------|
| Compound                                    | PiD (ppb)   | Hall (ppb) | Concen. |
| Vinyl Chloride                              | BDL         | BDL        |         |
| 1,1-Dichloroethene                          | BDL         | BOL        |         |
| t-1,2-Dichloroethene                        | BDL         | BOL        |         |
| c-1,2-Dichloroethene                        | BDL         | BDL        |         |
|                                             | BDL         | BDL        |         |
| 1,1-Dichloropropene                         | BDL         | n/a        |         |
| Benzene<br>Trichloroethene                  | BDL         | BDL        |         |
| c-1,3-Dichloropropene                       | BDL         | BDL        |         |
| t-1,3-Dichloropropene                       | BDL         | BDL        |         |
| Toluene                                     | BOL         | n/a        |         |
| Tetrachloroethene                           | BDL         | BDL        |         |
| Chlorobenzene                               | BDL         | BDL        |         |
| Ethylbenzene                                | BDL         | n/a        |         |
| m,p-Xylenes                                 | BDL         | n/a        |         |
| Styrene                                     | BDL BDL     | n/a        |         |
| •                                           |             | · ·        |         |
| o-Xylene<br>REB (surrogate)                 | BDL<br>65.5 | n/a<br>57  |         |
| BFB (surrogate)<br>40.42                    | BDL         | n/a        |         |
| ,                                           | BDL         | n/a<br>n/a |         |
| n-Propylbenzene<br>2-Chlorotoluene          | BDL<br>BDL  | n/a<br>BDL |         |
| 4-Chlorotoluene                             | BDL         | BDL        |         |
|                                             |             | n/a        |         |
| 1,3,5-Trimethylbenzene                      | BDL         |            |         |
| t-Butylbenzene                              | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene                      | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB                      | BDL         | n/a<br>BDI |         |
| 1,4-Dichlorobenzene                         | BDL         | BDL<br>a/a |         |
| p-Isopropyltoluene                          | BDL<br>BDL  | n/a<br>BDL |         |
| 1,2-Dichlorobenzene                         |             |            |         |
| n-Butylbenzene                              | BDL         | n/a<br>BDL |         |
| 1,2,4-Trichlorobenzene                      | BDL         |            |         |
| Naphthalene                                 | BDL<br>BDL  | n/a<br>BDL |         |
| Hexachlorobutadiene                         | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene                      |             | BDL        |         |
| Dichlorofluoromethane                       | n/a         | BDL        |         |
| Bromomethane                                | n/a         | BDL        |         |
| Chloroethane                                | n/a         |            |         |
| Trichlorofluoromethane<br>Methylenechloride | n/a         | BDL<br>14  | 11      |
| Methylenechloride                           | n/a         | 14<br>BDL  | 11      |
| 1,1-Dichloroethane                          | n/a         | BDL        |         |
| Bromochloromethane                          | n/a         | BDL        |         |
| Chloroform                                  | n/a         |            |         |
| 2,2-Dichloropropane                         | n/a         | BDL        |         |
| 1,2-Dichloroethane                          | n/a         | BDL        |         |
| 1,1,1-Trichloroethane                       | n/a<br>n/a  | BDL<br>BDL |         |
| Carbon Tetrachloride                        | •           |            |         |
| Dibromomethane                              | n/a         | BDL        |         |
| 1,2-Dichloropropane                         | n/a         | BDL        |         |
| Trichloroethene<br>Promodichloromethene     | n/a         | BDL        |         |
| Bromodichloromethane                        | n/a         | BDL        |         |
| 1,1,2-Trichloroethane                       | n/a         | BDL        |         |
| 1,3-Dichloropropene                         | n/a         | BDL        |         |
| Dibromochloromethane                        | n/a<br>- /- | BDL        |         |
| 1,2-dibromomethane                          | n/a.        | BDL        |         |
| 1,1,1,2-Tetrachloroethane                   | n/a         | BDL        |         |
|                                             | -/-         | PDI .      |         |
| Bromoform<br>41,43                          | n/a<br>n/a  | BDL<br>BDL |         |

Ť

Calibration Std.:vc0608.001

Date: 06/08/95 Blank: blk0608.001 Dilution:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| t-1,3-Dichloropropene       | BDL.      | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 93.7      | 79.8       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL.       |         |
| p-Isopropyitoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BOL       | n/a        |         |
| Hexachiorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a.      | BDL        |         |
| Methylenechloride           | n/a       | 13_        | 11      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1.2-dibromomethane          | n/a.      | BDL        |         |
| 1,1,1,2-Tetrachioroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:027S000712 Lab File ID:NAS214.001 Calibration Std.:vc0608.001 Date: 06/08/95 Biank: blk0608.001 Dilution:

n:

|                           | Concen.   | Concen.    | Blank   |
|---------------------------|-----------|------------|---------|
| Compound                  | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride            | BDL       | BDL        |         |
| 1,1-Dichloroethene        | BDL       | BDL        |         |
| t-1,2-Dichloroethene      | BDL       | BDL        |         |
| c-1,2-Dichloroethene      | BDL       | BDL        |         |
| 1,1-Dichloropropene       | BDL       | BDL        |         |
| Benzene                   | BDL       | n/a        |         |
| Trichloroethene           | BDL       | BDL        |         |
| c-1,3-Dichloropropene     | BDL       | BDL        |         |
| t-1,3-Dichloropropene     | BDL       | BDL        |         |
| Toluene                   | BDL       | n/a        |         |
| Tetrachloroethene         | BDL       | BDL        |         |
| Chlorobenzene             | BDL       | BDL        |         |
| Ethylbenzene              | BDL       | n/a        |         |
| m,p-Xylenes               | BDL       | n/a        |         |
| Styrene                   | BDL       | n/a        |         |
| o-Xylene                  | BDL       | n/a        |         |
| BFB (surrogate)           | 65.1      | 43.4       |         |
| 40,42                     | BDL       | n/a        |         |
| n-Propylbenzene           | BDL       | n/a        |         |
| 2-Chlorotoluene           | BDL       | BDL        |         |
| 4-Chlorotoluene           | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene    | BDL       | n/a        |         |
| t-Butylbenzene            | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene    | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB    | BDL       | n/a        |         |
| 1,4-Dichlorobenzene       | BDL       | BDL        |         |
| p-Isopropyltoluene        | BDL       | n/a        |         |
| 1,2-Dichlorobenzene       | BDL       | BDL        |         |
| n-Butylbenzene            | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene    | BDL       | BDL        |         |
| Naphthalene               | BDL       | n/a        |         |
| Hexachlorobutadiene       | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene    | BDL       | BDL        |         |
| Dichlorofluoromethane     | n/a       | BDL        |         |
| Bromomethane              | n/a       | BDL        |         |
| Chloroethane              | n/a       | BDL        |         |
| Trichlorofluoromethane    | n/a       | BDL        |         |
| Methylenechloride         | n/a       | 13         | 11      |
| 1,1-Dichloroethane        | n/a       | BDL        |         |
| Bromochioromethane        | n/a       | BDL        |         |
| Chloroform                | n/a       | BDL        |         |
| 2,2-Dichloropropane       | n/a       | BDL        |         |
| 1,2-Dichloroethane        | n/a.      | BDL        |         |
| 1,1,1-Trichloroethane     | n/a.      | BDL        |         |
| Carbon Tetrachloride      | n/a       | BDL        |         |
| Dibromomethane            | n/a       | BDL        |         |
| 1,2-Dichloropropane       | n/a       | BDL        |         |
| Trichloroethene           | n/a       | BDL        |         |
| Bromodichloromethane      | n/a       | BDL        |         |
| 1,1,2-Trichloroethane     | n/a       | BDL<br>BDI |         |
| 1,3-Dichloropropene       | n/a       | BDL        |         |
| Dibromochloromethane      | n/a       | BDL        |         |
| 1,2-dibromomethane        | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane | n/a       | BDL        |         |
| Bromoform                 | n/a       | BDL        |         |
| 41.43                     | n/a       | BDL        |         |

Sample Location:027S000801 Lab File ID:NAS217.001 Calibration Std.:vc0608.001

Date: 06/08/95 Blank: blk0608.001

Dilution:

|                                          | Concen.    | Concen.    | Blank   |
|------------------------------------------|------------|------------|---------|
| Compound                                 | PID (ppb)  | Hall (ppb) | Concen. |
| Vinyl Chloride                           | BDL        | BDL        |         |
| 1,1-Dichloroethene                       | BDL        | BDL        |         |
| -1,2-Dichloroethene                      | BDL        | BDL        |         |
| c-1,2-Dichloroethene                     | BDL        | BDL        |         |
| 1,1-Dichloropropene                      | BDL        | BDL        |         |
| Benzene                                  | BDL        | n/a        |         |
| Trichloroethene                          | BDL        | BDL        |         |
| c-1,3-Dichloropropene                    | BDL        | BDL        |         |
| t-1,3-Dichloropropene                    | BDL        | BDL        |         |
| Toluene                                  | BDL        | n/a        |         |
| Tetrachloroethene                        | BDL        | BDL        |         |
| Chlorobenzene                            | BDL        | BDL        |         |
| Ethylbenzene                             | BDL        | n/a        |         |
| m,p-Xylenes                              | BDL        | n/a        |         |
| Styrene                                  | BDL        | n/a        |         |
| o-Xylene                                 | BDL        | n/a        |         |
| BFB (surrogate)                          | 69         | 51.8       |         |
| 40,42                                    | BDL        | n/a        |         |
| n-Propylbenzene                          | BDL<br>BDL | n/a<br>BDL |         |
| 2-Chlorotoluene                          | BDL        | BDL        |         |
| 4-Chlorotoluene                          | BDL        | n/a        |         |
| 1,3,5-Trimethylbenzene                   | BDL        | n/a        |         |
| t-Butylbenzene<br>1,2,4-Trimethylbenzene | BDL        | n/a        |         |
| s-butylbenzene/1,3-DCB                   | BDL<br>BDL | n/a        |         |
| 1,4-Dichlorobenzene                      | BDL.       | BDI        |         |
| p-Isopropyltoluene                       | BDL        | n/a        |         |
| 1,2-Dichlorobenzene                      | BDL BDL    | BDL        |         |
| n-Butylbenzene                           | BOL        | n/a        |         |
| 1,2,4-Trichlorobenzene                   | BDL.       | BDL        |         |
| Naphthalene                              | BDL        | n/a        |         |
| Hexachlorobutadiene                      | BDL        | BDL        |         |
| 1,2,3-Trichlorobenzene                   | BDL        | BDL        |         |
| Dichlorofluoromethane                    | n/a        | BDL        |         |
| Bromomethane                             | n/a        | BDL        |         |
| Chloroethane                             | n/a        | BDL        |         |
| Trichlorofluoromethane                   | n/a        | BDL        |         |
| Methylenechloride                        | n/a        | 1.7.       | 11      |
| 1,1-Dichloroethane                       | n/a        | BDL        |         |
| Bromochloromethane                       | n/a        | BDL        |         |
| Chloroform                               | n/a        | BDL        |         |
| 2,2-Dichloropropane                      | n/a        | BDL        |         |
| 1,2-Dichloroethane                       | n/a        | BDL        |         |
| 1,1,1-Trichloroethane                    | n/a        | BDL        |         |
| Carbon Tetrachloride                     | n/a        | BDL        |         |
| Dibromomethane                           | n/a        | BDL        |         |
| 1,2-Dichloropropane                      | n/a        | BDL        |         |
| Trichloroethene                          | n/a        | BDL        |         |
| Bromodichloromethane                     | n/a        | BDL        |         |
| 1,1,2-Trichloroethane                    | n/a        | BDL        |         |
| 1,3-Dichloropropene                      | n/a        | BDL        |         |
| Dibromochloromethane                     | n/a        | BDL        |         |
| 1,2-dibromomethane                       | n/a        | BDL        |         |
| 1,1,2-Tetrachloroethane                  | n/a        | BDL        |         |
| Bromoform                                | n/a        | BDL        |         |
| 41,43                                    | n/a        | BDL        |         |
| 1,2-Dibromo-3-chloropropene              | n/a        | BDL        |         |

Sample Location:027S000806 Lab File ID:NAS216.001 Calibration Std.:vc0608.001 Date: 06/08/95 Blank: blk0608.001 Dilution:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| /inyl Chloride              | BDL       | BDL        |         |
| ,1-Dichloroethene           | BDL       | BDL        |         |
| -1,2-Dichloroethene         | BDL       | BDL        |         |
| -1,2-Dichloroethene         | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Frichloroethene             | BDL       | BDL        |         |
| -1,3-Dichloropropene        | BDL       | BDL        |         |
| -1,3-Dichloropropene        | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| n,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 80.2      | 63.7       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| -Butylbenzene               | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| o-isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BOL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechloride           | n/a       | 12.        | 11      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:027S000812 Lab File ID:NAS215.001 Calibration Std.:vc0608.001 Date: 06/08/95 Blank: blk0608.001 Dilution:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| -1,2-Dichloroethene         | BDL       | BDL        |         |
| -1,2-Dichloroethene         | BDL       | BDL        |         |
| ,<br>1,1-Dichloropropene    | BDL.      | BDL        |         |
| Benzene                     | BOL       | n/a        |         |
| Frichloroethene             | BDL       | BDL        |         |
| -1,3-Dichloropropene        | BDL       | BDL        |         |
| -1,3-Dichloropropene        | BOL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| >-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 89.1      | 79.8       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| p-isopropyitoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechloride           | n/a       | BDL        | 11      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BOL        |         |
| 2,2-Dichloropropane         | n/a       | BOL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BOL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:027G000844 Lab File ID:NAS222.001 Calibration Std.:vc0608.001

Date: 06/08/95 Blank: blk0608.001 Dilution:

|                                             | Concen.      | Concen.    | Blank  |
|---------------------------------------------|--------------|------------|--------|
| Compound                                    | PID (ppb)    | Hall (ppb) | Concen |
| finyl Chloride                              | BDL          | BDL        |        |
| ,1-Dichloroethene                           | BOL          | BDL        |        |
| 1,2-Dichloroethene                          | BDL          | BDL        |        |
| -1,2-Dichloroethene                         | BDL          | BDL        |        |
| 1-Dichloropropene                           | BDL          | BDL        |        |
| enzene                                      | BDL          | n/a        |        |
| richloroethene                              | BDL          | BDL        |        |
| -1,3-Dichloropropene                        | BDL          | BDL        |        |
| 1,3-Dichloropropene                         | BDL          | BDL        |        |
| oluene                                      | BDL          | n/a        |        |
| etrachloroethene                            | BDL          | BDL        |        |
| hlorobenzene                                | BDL          | BDL        |        |
| thylbenzene                                 | BDL          | n/a        |        |
| n,p-Xylenes                                 | BDL          | n/a        |        |
| tyrene                                      | BDL          | n/a        |        |
| -Xyiene                                     | BDL          | n/a        |        |
| FB (surrogate)                              | 95.2         | 98.7       |        |
| 0,42                                        | BDL          | n/a        |        |
| -Propylbenzene                              | BDL          | n/a        |        |
| -Chtorotoluene                              | BDL          | BDL        |        |
| -Chlorotoluene                              | BDL          | BDL        |        |
| 3,5-Trimethylbenzene                        | BDL          | n/a        |        |
| Butylbenzene                                | BDL          | n/a        |        |
| ,2,4-Trimethylbenzene                       | BDL          | n/a        |        |
| -butylbenzene/1,3-DCB                       | BDL          | n/a        |        |
| 4-Dichlorobenzene                           | BDL          | BDL        |        |
| -isopropyitoluene                           | BDL          | n/a        |        |
| 2-Dichlorobenzene                           | BDL          | BDL        |        |
| -Butylbenzene                               | BDL          | n/a        |        |
| ,2,4-Trichlorobenzene                       | BDL          | BDL        |        |
| laphthalene                                 | BDL          | n/a        |        |
| exachlorobutadiene                          | BDL          | BDL        |        |
| ,2,3-Trichlorobenzene                       | BDL          | BDL        |        |
| Dichlorofluoromethane                       | n/a          | BDL        |        |
| Promomethane                                | n/a          | BDL        |        |
| chloroethane                                | n/a          | BDL        |        |
| richlorofluoromethane                       | n/a          | BDL        | 14     |
| lethylenechloride                           | n/a          | BDL        | 11     |
| ,1-Dichloroethane                           | n/a          | BDL        |        |
| romochloromethane                           | n/a          | BDL<br>BDL |        |
| hloroform<br>2 Dichloropropens              | n/a<br>n/a   |            |        |
| ,2-Dichloropropane                          | n/a.         | BDL<br>BDL |        |
| ,2-Dichloroethane<br>,1,1-Trichloroethane   | n/a<br>n/a   | BDL        |        |
| ,1,1-1richioroethane<br>arbon Tetrachloride | n/a.<br>n/a. | BDL        |        |
| Dibromomethane                              | n/a.         | BDL        |        |
|                                             | n/a.         | BDL        |        |
| ,2-Dichloropropane<br>richloroethene        | n/a.         | BDL        |        |
| nchloroethene<br>Bromodichloromethane       | n/a.<br>n/a  | BDL        |        |
| ,1,2-Trichloromethane                       | n/a          | BDL        |        |
|                                             | n/a          | BDL        |        |
| ,3-Dichloropropene<br>Dibromochloromethane  | n/a<br>n/a   | BDL        |        |
| .2-dibromomethane                           | n/a          | BDL        |        |
| ,1,1,2-Tetrachloroethane                    | n/a          | BDL        |        |
| r, r, r, 2- retrachioroethane<br>Bromoform  | n/a          | BDL        |        |
| 1,43                                        | n/a          | BDL        |        |
| ·                                           |              |            |        |
| 2-Dibromo-3-chloropropene                   | n/a          | 8DL        |        |

Sample Location:027S000901 Lab File ID:NAS218.001 Calibration Std.:vc0608.001

Date: 06/08/95 Blank: blk0608.001 Dilution:

|                            | Concen.   | Concen.    | Blank   |
|----------------------------|-----------|------------|---------|
| Compound                   | PID (ppb) | Hall (ppb) | Concen. |
| /inyl Chloride             | BDL       | BDL        |         |
| 1,1-Dichloroethene         | BDL       | BDL        |         |
| -1,2-Dichloroethene        | BDL       | BDL        |         |
| -1,2-Dichloroethene        | BDL       | BDL        |         |
| ,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                    | BDL       | n/a        |         |
| Frichloroethene            | BDL       | BDL        |         |
| c-1,3-Dichloropropene      | BDL       | BDL        |         |
| -1,3-Dichloropropene       | BDL       | BDL        |         |
| Toluene                    | BDL       | n/a        |         |
| Tetrachloroethene          | BDL       | BDL        |         |
| Chlorobenzene              | BDL       | BDL        |         |
| Ethylbenzene               | BDL       | n/a        |         |
| n,p-Xylenes                | BDL       | n/a        |         |
| Styrene                    | BDL       | n/a        |         |
| p-Xylene                   | BDL       | n/a        |         |
| BFB (surrogate)            | 77.4      | 66.6       |         |
| 40, <b>42</b>              | BDL       | n/a        |         |
| n-Propylbenzene            | BOL       | n/a        |         |
| 2-Chlorotoluene            | BDL       | BDL        |         |
| 4-Chlorotoluene            | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene     | BDL       | n/a        |         |
| :-Butylbenzene             | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene     | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB     | BDL       | n/a        |         |
| 1.4-Dichlorobenzene        | BDL       | BDL        |         |
|                            | BDL       | n/a        |         |
| o-Isopropyltoluene         | BDL       | BDL        |         |
| 1,2-Dichlorobenzene        | BDL       |            |         |
| n-Butylbenzene             |           | n/a        |         |
| 1,2,4-Trichlorobenzene     | BDL       | BDL        |         |
| Naphthalene                | BDL       | n/a        |         |
| Hexachlorobutadiene        | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene     | BDL       | BDL        |         |
| Dichlorofluoromethane<br>- | n/a       | BDL        |         |
| Bromomethane               | n/a       | BDL        |         |
| Chloroethane               | n/a       | BDL        |         |
| Trichlorofluoromethane     | n/a       | BDL        | 4.4     |
| Methylenechloride          | n/a       | 15         | 11      |
| 1,1-Dichloroethane         | n/a       | BDL        |         |
| Bromochloromethane         | n/a       | BDL        |         |
| Chloroform                 | n/a       | BDL        |         |
| 2,2-Dichloropropane        | n/a       | BDL        |         |
| 1,2-Dichloroethane         | n/a       | BDL        |         |
| 1,1,1-Trichloroethane      | n/a       | BDL        |         |
| Carbon Tetrachloride       | n/a       | BDL        |         |
| Dibromomethane             | n/a       | BDL        |         |
| 1,2-Dichloropropane        | n/a       | BDL        |         |
| Trichloroethene            | n/a       | BDL        |         |
| Bromodichloromethane       | n/a       | BDL        |         |
| 1,1,2-Trichloroethane      | n/a       | BDL        |         |
| 1,3-Dichloropropene        | n/a       | BDL        |         |
| Dibromochloromethane       | n/a       | BDL        |         |
| 1,2-dibromomethane         | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane  | n/a       | BDL        |         |
| Bromoform                  | n/a       | BDL        |         |
| 41,43                      | n/a       | BDL        |         |
|                            |           |            |         |

Sample Location:027S000906 Lab File ID:NAS219A.001 Calibration Std.:vc0608.001 Date: 06/08/95 Blank: blk0608.001 Dilution:

1

|                                            | Concen.    | Concen.    | Blank   |
|--------------------------------------------|------------|------------|---------|
| Compound                                   | PID (ppb)  | Hail (ppb) | Concen. |
| Vinyl Chloride                             | BDL        | BDL        |         |
| 1,1-Dichloroethene                         | BDL        | BDL        |         |
| :-1,2-Dichloroethene                       | BDL        | BDL        |         |
| :-1,2-Dichloroethene                       | BDL        | BDL        |         |
| ,1-Dichloropropene                         | BDL        | BDL        |         |
| Benzene                                    | BOL        | n/a        |         |
| richloroethene                             | BDL        | BDL        |         |
| -1,3-Dichloropropene                       | BDL        | BDL        |         |
| -1,3-Dichloropropene                       | BDL        | BDL        |         |
| oluene                                     | BDL        | n/a        |         |
| etrachloroethene                           | BDL        | BDL        |         |
| Chlorobenzene                              | BDL        | BDL        |         |
| thylbenzene                                | BOL        | n/a        |         |
| n,p-Xylenes                                | BDL        | n/a        |         |
| tyrene                                     | BDL        | n/a        |         |
| -Xylene                                    | BDL        | n/a        |         |
| FB (surrogate)                             | 78.1       | 66.7       |         |
| 0,42                                       | BDL        | n/a        |         |
| -Propylbenzene                             | BDL        | n/a        |         |
| -Chlorotoluene                             | BDL        | BDL        |         |
| -Chlorotoluene                             | BDL        | BDL        |         |
| ,3,5-Trimethylbenzene                      | BDL        | n/a        |         |
| Butylbenzene                               | BDL        | n/a        |         |
| ,2,4-Trimethylbenzene                      | BDL        | n/a        |         |
| -butylbenzene/1,3-DCB                      | BDL        | n/a        |         |
| 4-Dichlorobenzene                          | BDL        | BDL        |         |
| -isopropyltoluene                          | BDL        | n/a        |         |
| ,2-Dichlorobenzene                         | BDL        | BDL        |         |
| -Butylbenzene                              | BDL        | n/a        |         |
| ,2,4-Trichlorobenzene                      | BDL        | BDL        |         |
| laphthalene                                | BDL        | n/a        |         |
| lexachlorobutadiene                        | BDL        | BDL        |         |
| 2,3-Trichlorobenzene                       | BDL        | BDL        |         |
| ichlorofluoromethane                       | n/a        | BDL        |         |
| romomethane                                | n/a        | BDL        |         |
| Chloroethane                               | n/a        | BDL        |         |
| richlorofluoromethane                      | n/a        | BDL        |         |
| Methylenechloride                          | n/a        | 14.        | 11      |
| .1-Dichloroethane                          | n/a        | BDL        | • •     |
| romochloromethane                          | n/a        | BDL        |         |
| hloroform                                  | n/a        | BDL        |         |
| ,2-Dichloropropane                         | n/a        | BDL        |         |
| ,2-Dichloropropane<br>,2-Dichloroethane    | n/a        | BDL<br>BDL |         |
| ,2-Dichloroethane<br>,1,1-Trichloroethane  | n/a<br>n/a | BDL        |         |
| ,1,1-Inchloroethane<br>arbon Tetrachloride | n/a<br>n/a | BDL        |         |
| Dibromomethane                             | n/a.       | BDL        |         |
|                                            | •          | BDL        |         |
| ,2-Dichloropropane                         | n/a        |            |         |
| richloroethene                             | n/a        | BDL        |         |
| Promodichloromethane                       | n/a.       | BDL        |         |
| ,1,2-Trichloroethane                       | n/a.       | BDL        |         |
| ,3-Dichloropropene                         | n/a        | BDL        |         |
| Dibromochloromethane                       | n/a.       | BDL        |         |
| ,2-dibromomethane                          | n/a        | BDL        |         |
| ,1,1,2-Tetrachloroethane                   | n/a        | BDL        |         |
| romoform                                   | n/a        | BDL        |         |
| 1,43                                       | n/a        | BDL        |         |
| 2-Dibromo-3-chloropropene                  | n/a        | BDL        |         |
|                                            |            |            |         |

Sample Location:027S000912 Lab File ID:NAS220.001 Calibration Std.:vc0608.001 Date: 06/08/95 Blank: blk0608.001 Dilution:

on:

|                                        | Concen.      | Concen.    | Blank   |
|----------------------------------------|--------------|------------|---------|
| Compound                               | PID (ppb)    | Hail (ppb) | Concen. |
| Vinyl Chloride                         | BDL          | BDL        | ··      |
| 1,1-Dichloroethene                     | BDL          | BDL        |         |
| t-1,2-Dichloroethene                   | BDL          | BDL        |         |
| c-1,2-Dichloroethene                   | BDL          | BDL        |         |
| 1,1-Dichloropropene                    | BDL          | BDL        |         |
| Benzene                                | BDL          | n/a        |         |
| Trichloroethene                        | BDL          | BDL        |         |
| c-\$,3-Dichloropropene                 | BDL          | BDL        |         |
| t-1,3-Dichloropropene                  | BDL          | BDL        |         |
| Toluene                                | BDL          | n/a        |         |
| Tetrachloroethene                      | BDL          | BDL        |         |
| Chlorobenzene                          | BDL          | BDL        |         |
| Ethylbenzene                           | BDL          | n/a        |         |
| m,p-Xylenes                            | BDL          | n/a        |         |
| Styrene                                | BDL          | n/a        |         |
| o-Xylene                               | BDL          | n/a        |         |
| BFB (surrogate)                        | 90.9         | 105        |         |
| 40,42                                  | BDL          | n/a        |         |
| n-Propylbenzene                        | BDL          | n/a        |         |
| 2-Chlorotoluene                        | BDL          | BDL        |         |
| 4-Chlorotoluene                        | BDL          | BDL        |         |
| 1,3,5-Trimethylbenzene                 | BDL          | n/a        |         |
| t-Butylbenzene                         | BDL          | n/a        |         |
| 1,2,4-Trimethylbenzene                 | BDL          | n/a        |         |
| s-butylbenzene/1,3-DCB                 | BDL          | n/a        |         |
| 1,4-Dichlorobenzene                    | BDL          | BDL        |         |
| p-isopropyitoluene                     | BDL          | n/a        |         |
| 1,2-Dichlorobenzene                    | BDL          | BDL        |         |
| n-Butylbenzene                         | BDL          | n/a        |         |
| 1,2,4-Trichlorobenzene                 | BDL          | BDL        |         |
| Naphthalene                            | BDL          | n/a        |         |
| Hexachlorobutadiene                    | BDL          | BDL        |         |
| 1,2,3-Trichlorobenzene                 | BDL          | BDL        |         |
| Dichlorofluoromethane                  | n/a          | BDL        |         |
| Bromomethane                           | n/a          | BDL        |         |
| Chloroethane                           | n/a          | BDL        |         |
| Trichlorofluoromethane                 | n/a          | BDL        |         |
| Methylenechloride                      | n/a          | 9_         | 11      |
| 1.1-Dichloroethane                     | n/a          | BDL        |         |
| Bromochloromethane                     | n/a          | BDL        |         |
| Chloroform                             | n/a          | BDL        |         |
| 2,2-Dichtoropropane                    | n/a          | BDL        |         |
| 1,2-Dichloroethane                     | n/a          | BDL        |         |
| 1,1,1-Trichloroethane                  | n/a          | BDL        |         |
| Carbon Tetrachloride                   | n/a.         | BDL BDL    |         |
| Dibromomethane                         | n/a          | BDL        |         |
| 1,2-Dichloropropane                    | n/a          | BDL        |         |
| Trichloroethene                        | n/a          | BDL        |         |
| richioroethene<br>Bromodichloromethane | n/a.         | BDL        |         |
|                                        | n/a.<br>n/a. | BDL        |         |
| 1,1,2-Trichloroethane                  | -            |            |         |
| 1,3-Dichloropropene                    | n/a          | BDL        |         |
| Dibromochloromethane                   | n/a          | BDL        |         |
| 1,2-dibromomethane                     | n/a          | BDL<br>BDL |         |
| 1,1,1,2-Tetrachioroethane              | n/a          | BDL        |         |
| Bromoform                              | n/a<br>- /-  | BDL        |         |
| 41,43                                  | n/a          | BDL        |         |

Sample Location:027G000944 Lab File ID:NAS221.001 Calibration Std.:vc0608.001 Date: 06/08/95 Blank: blk0608.001 Dilution:

tion:

|                             | Concen.     | Concen.    | Biank   |
|-----------------------------|-------------|------------|---------|
| Compound                    | PID (ppb)   | Hail (ppb) | Concen. |
| Vinyl Chloride              | BDL         | BDL        |         |
| 1,1-Dichloroethene          | BDL         | BDL        |         |
| t-1,2-Dichloroethene        | BDL         | BDL        |         |
| c-1,2-Dichloroethene        | BDL         | BDL        |         |
| 1,1-Dichloropropene         | BDL         | BDL        |         |
| Benzene                     | BDL         | n/a        |         |
| Trichloroethene             | BDL         | BOL        |         |
| c-1,3-Dichloropropene       | BDL         | BDL        |         |
| t-1,3-Dichloropropene       | BDL         | BDL        |         |
| Toluene                     | BDL         | n/a        |         |
| Tetrachioroethene           | BDL         | BOL        |         |
| Chlorobenzene               | BDL         | BDL        |         |
| Ethylbenzene                | BDL         | n/a        |         |
| m,p-Xylenes                 | BDL         | n/a        |         |
| Styrene                     | BDL         | n/a        |         |
| o-Xylene                    | BDL         | n/a        |         |
| BFB (surrogate)             | 97.6        | 97.4       |         |
| 40,42                       | BDL         | n/a        |         |
| n-Propylbenzene             | BDL         | n/a        |         |
| 2-Chlorotoluene             | BDL         | BDL        |         |
| 4-Chlorotoluene             | BDL         | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL         | n/a        |         |
| t-Butylbenzene              | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL         | n/a        |         |
| 1,4-Dichlorobenzene         | BDL         | BDL        |         |
| p-isopropyitoluene          | BDL         | n/a        |         |
| 1,2-Dichlorobenzene         | BDL         | BDL        |         |
| n-Butylbenzene              | BDL         | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL         | BDL        |         |
| Naphthalene                 | BDL         | n/a        |         |
| Hexachlorobutadiene         | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL         | BDL        |         |
| Dichlorofluoromethane       | n/a         | BDL        |         |
| Bromomethane                | n/a         | BDL        |         |
| Chloroethane                | n/a         | BDL        |         |
| Trichlorofluoromethane      | n/a         | BDL        |         |
| Methylenechloride           | n/a         | BOL        | 11      |
| 1,1-Dichloroethane          | n/a         | BDL        |         |
| Bromochloromethane          | n/a         | BDL        |         |
| Chloroform                  | n/a         | BDL        |         |
| 2,2-Dichloropropane         | n/a         | BDL        |         |
| 1,2-Dichloroethane          | n/a         | BDL        |         |
| 1,1,1-Trichloroethane       | n/a         | BDL        |         |
| Carbon Tetrachloride        | n/a         | BDL        |         |
| Dibromomethane              | n/a         | BDL        |         |
| 1,2-Dichloropropane         | n/a         | BDL        |         |
| Trichloroethene             | n/a         | BDL        |         |
| Bromodichloromethane        | n/a         | BDL        |         |
| 1,1,2-Trichloroethane       | π/ <b>a</b> | BDL        |         |
| 1,3-Dichloropropene         | n/a         | BDL        |         |
| Dibromochloromethane        | n/a         | BDL        |         |
| 1,2-dibromomethane          | n/a         | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a         | BDL        |         |
| Bromoform                   | n/a         | BDL        |         |
| 41,43                       | n/a         | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a         | BDL        |         |

~ 1

ASSEMBLY C CSI REPORT NAVAL SUPPORT ACTIVITY MEMPHIS MILLINGTON, TENNESSEE

RCRA FACILITY INVESTIGATION SWMU 62 — M-21 ARRESTING GEAR



# **REVISION 2**

CTO-094

Contract No: N62467-89-D-0318

# Prepared for:

Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina



# Prepared by:

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 (901) 383-9115

# **Table of Contents**

| EXEC | UTIVE SUMMARY                                                                                                                                                                                                                                                                                                                                                               | . iv                                              |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1.0  | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                | 1-1                                               |
| 2.0  | SITE DESCRIPTION AND HISTORICAL INFORMATION  2.1 Site Description                                                                                                                                                                                                                                                                                                           | 2-1                                               |
| 3.0  | PREVIOUS INVESTIGATIONS                                                                                                                                                                                                                                                                                                                                                     | 3-1                                               |
| 4.0  | FIELD INVESTIGATION AND METHODS  4.1 Subsurface and Surface Soil Investigation 4.1.1 Surface Soil Investigation 4.1.2 DPT Subsurface Soil Investigation  4.2 DPT Groundwater Investigation  4.3 Sampling Protocol 4.3.1 QA/QC Samples 4.3.2 Sample Processing and Chain-of-Custody Procedure 4.3.3 Sample Labeling  4.4 Grouting Procedures  4.5 Decontamination Procedures | 4-3<br>4-7<br>4-9<br>4-10<br>4-10<br>4-11<br>4-11 |
| 5.0  | GEOLOGY AND HYDROGEOLOGY  5.1 Regional Geology and Hydrogeology  5.2 Site-Specific Geology and Hydrogeology  5.2.1 USGS Stratigraphic Test Boring  5.2.2 Previous Investigations  5.2.3 DPT Piezocone Soundings  5.2.4 DPT Hydrocone Plots                                                                                                                                  | 5-1<br>5-2<br>5-3<br>5-4<br>5-4                   |
| 6.0  | NATURE AND EXTENT OF CONTAMINATION  6.1 Background Reference Concentrations  6.2 Soil Sample Analytical Results  6.2.1 Surface Soil Samples  6.2.2 Subsurface Soil Samples  6.3 Groundwater Samples  6.4 Summary of Nature and Extent                                                                                                                                       | 6-2<br>6-2<br>6-7<br>6-8                          |
| 7.0  | PRELIMINARY RISK EVALUATION                                                                                                                                                                                                                                                                                                                                                 | 7-1                                               |
| 8.0  | CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                             | 8-1                                               |
| 9.0  | REFERENCES                                                                                                                                                                                                                                                                                                                                                                  | Q_1                                               |

# List of Figures

| Figure 1-1 | Vicinity Map                                                                 |  |  |  |  |
|------------|------------------------------------------------------------------------------|--|--|--|--|
| Figure 1-2 |                                                                              |  |  |  |  |
| Figure 2-1 |                                                                              |  |  |  |  |
| Figure 4-1 | Sample Locations                                                             |  |  |  |  |
| Figure 6-1 | Background Sample Locations                                                  |  |  |  |  |
| Figure 6-2 |                                                                              |  |  |  |  |
| Figure 6-3 | Groundwater Contaminants Summary 6-13                                        |  |  |  |  |
| Figure 6-4 | Transfer from Soil to Groundwater SSL Exceedances 6-15                       |  |  |  |  |
|            | List of Tables                                                               |  |  |  |  |
| Table 6-1  | Detected Concentrations of Metals, Pesticides, and SVOCs in Surface Soil 6-5 |  |  |  |  |
| Table 6-2  | Detected Concentrations of VOCs in Subsurface Soil 6-8                       |  |  |  |  |
| Table 6-3  | Detected Concentrations of VOCs in Groundwater 6-8                           |  |  |  |  |
| Table 7-1  | PRE for Residential and Commercial Carcinogens                               |  |  |  |  |
| Table 7-2  | PRE for Residential and Commercial Non-Carcinogens                           |  |  |  |  |
|            | List of Appendices                                                           |  |  |  |  |
|            | DPT Piezocone and Hydrocone Plots<br>Analytical Data                         |  |  |  |  |
| * *        | •                                                                            |  |  |  |  |

#### LIST OF ACRONYMS AND ABBREVIATIONS

BRAC Base Realignment and Closure

bls below land surface

CSI Confirmatory Sampling Investigation

DPT direct push technology
DQOs Data Quality Objectives
E/A&H EnSafe/Allen & Hoshall

HI hazard index

ILCR Incremental Lifetime Excess Cancer Risk

IM Interim Measures

MCL maximum contaminant level

 $\mu g/L$  micrograms per liter mg/kg milligrams per kilogram

ND not detected

NET National Environmental Testing, Incorporated

NSA Naval Support Activity (formerly Naval Air Station)

PCBs polychlorinated biphenyls
PRE Preliminary Risk Evaluation
RBC risk-based concentration
RC reference concentration

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation

RR risk ratio

SOUTHNAVFACENGCOM Southern Division Naval Facilities Engineering Command

SVOC semivolatile organic compound SWMU solid waste management unit SST Subsurface Technologies, Inc.

THQ target hazard quotient

TR target risk

USEPA United States Environmental Protection Agency

USGS U.S. Geological Survey
UST underground storage tank
VOC volatile organic compound

#### **EXECUTIVE SUMMARY**

The Assembly C Site Investigation Plans for Naval Support Activity Memphis proposed two phases of investigation for a Confirmatory Sampling Investigation (CSI) at Solid Waste Management Unit (SWMU) 62, the M-21 Arresting Gear. The first phase consisted of a soil and groundwater investigation using Direct Push Technology (DPT) equipment. Based on the results of the first phase, the second phase, consisting of installing and sampling soil borings and monitoring wells, is not required. This report summarizes the activities conducted during the CSI's first phase and the resulting findings and conclusions.

During the first phase of the CSI, 12 subsurface soil samples collected from two intervals at six locations were analyzed for volatile organic compounds (VOCs). No detected concentration of any VOC in subsurface soil exceeded its U.S. Environmental Protection Agency (USEPA) soil screening level. Fluvial deposits groundwater samples collected from four locations were analyzed for VOCs. No VOC in groundwater exceeded its USEPA risk-based concentration (RBC) for tap water or its maximum contaminant level for drinking water.

To finalize the Resource Conservation and Recovery Act closure of the SWMU, three surface soil samples were collected and analyzed for semivolatile organic compounds (SVOCs), pesticides/polychlorinated biphenyls (PCBs), and Appendix IX metals. No SVOCs or PCBs were detected in the soil samples. No detected concentration of any pesticide exceeded its residential RBC. No detected concentration of any metal exceeded both its residential RBC and its background reference concentration (two times the mean background concentration). The surface soil sample results were used to prepare a Preliminary Risk Evaluation (PRE). The PRE indicates the property is suitable for lease for either residential or commercial land use.

Based on the results of the first phase and the PRE, no further action is recommended for SWMU 62.

#### 1.0 INTRODUCTION

As part of the U.S. Navy Installation Restoration Program, the following Confirmatory Sampling Investigation (CSI) report has been prepared for Solid Waste Management Unit (SWMU) 62, the M-21 Arresting Gear, on the Northside of Naval Support Activity (NSA) Memphis in Millington, Tennessee. Figures 1-1 and 1-2 provide a vicinity map and aerial photograph of SWMU 62, respectively.

As a result of the Base Closure and Realignment Act of 1990 (BRAC), a portion of NSA Memphis, which includes SWMU 62, will be closed and prepared for transfer to the City of Millington. Eight SWMU assemblies (i.e., groups) have been defined for the NSA Memphis Resource Conservation and Recovery Act (RCRA) Corrective Action Program. Four of these assemblies (A, B, C, and D) are on closing portions of the base and have been categorized and ranked according to their BRAC status. SWMU 62 is in Assembly C, which is composed of five SWMUs requiring CSIs to confirm whether a release of contaminants has occurred and, if so, whether RCRA Facility Investigation (RFI) characterization will be required. The remaining four assemblies (E, F, G, and H) are on portions of the base that will remain open. The investigation, undertaken by EnSafe/Allen & Hoshall (E/A&H), adhered to the requirements of the Hazardous and Solid Waste Amendments portion (HSWA-TN002) of RCRA Permit No. TN2-170-022-600 and applicable regulations.

The Assembly C Site Investigation Plans (E/A&H, 1995) proposed two phases of investigation for the CSI at SWMU 62. The first phase consisted of a subsurface soil and groundwater investigation using Direct Push Technology (DPT) equipment. Based on the results of the first phase, the second phase, consisting of installing and sampling soil borings and monitoring wells, is not required.











0

200

400 Ft.





RCRA FACILITY INVESTIGATION
NSA MEMPHIS
MILLINGTON, TENNESSEE

FIGURE 1-2 DIGITAL ORTHOPHOTOGRAPH M-21 ARRESTING GEAR SWMU 62

AML bornel/sel/steve/site\_di

In addition, three surface-soil samples were collected and analyzed, and the results were used to prepare a Preliminary Risk Evaluation (PRE). The PRE indicates the property is suitable for lease for either residential or commercial land use.

This CSI report summarizes the activities conducted during the first phase of the CSI and provides conclusions, including a recommendation for no further action at SWMU 62.

#### 2.0 SITE DESCRIPTION AND HISTORICAL INFORMATION

# 2.1 Site Description

SWMU 62 is the former location of a portable arresting gear mechanism (M-21) on the active Runway 4-22. The site presently consists of two empty, cement-lined, L-shaped containment pits on either side of the runway that once housed the arresting gear. A 4-foot diameter cement cap, approximately 90 feet west of the western containment pit, covers a makeshift drywell, which once received drainage from the containment pit. This area has been disturbed by past activities and is generally level. The site drains southwest along a drainage swale which ultimately empties into the North Fork Creek. Figure 2-1 provides a site map of SWMU 62.

# 2.2 Historical Site Operations

The gear, which was powered by a generator, was first used in 1985 for pilot training. A 6-inch diameter polyvinyl chloride drain line was installed in the L-shaped containment pit on the west side of the runway to drain any potentially contaminated rainwater which might otherwise collect in the pit. This drain line led to the drywell. No construction details are available for the well itself, but, according to Public Works personnel, it is constructed of three 55-gallon drums welded end-to-end, buried in a 12-foot deep hole, and seated on a bed of gravel. The bottom drum was perforated to allow water to seep out. The residual contaminants from the arresting gear pit (hydraulic fluid, diesel fuel, and lube oil) would enter the drum unit and float on the heavier water, allowing for periodic removal. A pile of leftover cement is approximately 30 feet west of the drywell.



# 3.0 PREVIOUS INVESTIGATIONS

No known site investigations were performed before the CSI.

Revision 2: September 25, 1996

#### 4.0 FIELD INVESTIGATION AND METHODS

The CSI soil and groundwater sampling program at SWMU 62 was performed to determine if contaminants associated with the arresting gear pits and drywell were present in subsurface soil and groundwater. Specifically, the CSI objectives were:

- Determine the potential for subsurface soil contamination in the loess.
- Determine the potential for groundwater contamination in the loess and fluvial deposits.
- Assess the status/impact from the arresting gear pits and the drywell.
- Determine the suitability of the property for leasing by preparing a PRE.

This section summarizes the soil and groundwater sampling tasks during the first phase of the CSI, which used a hand auger to collect surface soil samples and DPT equipment for subsurface soil and groundwater sampling. The field sampling activities followed the procedures outlined in the U.S. Environmental Protection Agency (USEPA) and Tennessee Department of Environment and Conservation-approved *Comprehensive RFI Work Plan* (E/A&H, 1994) and *Assembly C Site Investigation Plans* (E/A&H, 1995).

Section 4.1 presents the general sampling protocols and rationale for the hand-auger surface-soil investigation and the DPT subsurface soil investigation. Section 4.2 presents the general sampling protocols and rationale for the DPT groundwater investigation. Specific sampling protocols (sample handling, field Quality Assurance/Quality Control [QA/QC], and decontamination) are presented in Section 4.3.

## **Analytical Parameters**

Three surface-soil samples were collected and analyzed to prepare a PRE to determine the suitability of the property for leasing. These samples were shipped to the National Environmental Testing (NET) laboratory in Bedford, Massachusetts, and analyzed for semivolatile organic compounds (SVOCs) by USEPA Method 8270, pesticides/polychlorinated

Confirmatory Sampling Investigation Report

Assembly C — SWMU 62, M-21 Arresting Gear

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

biphenyls (PCBs) by USEPA Method 8080, and Appendix IX metals by USEPA Method

6010/7000 series.

Subsurface soil and groundwater samples were collected during the DPT investigation to

determine the nature and extent of possible petroleum or solvent contamination at SWMU 62 by

selecting volatile organic compounds (VOCs) as an indicator parameter. Each sample was

transported to Hydrologic, Inc.'s onsite mobile laboratory for the immediate analysis of VOCs

by USEPA Method 8021. Approximately 25% of the samples were split (duplicates) for QA/QC

purposes during the screening survey. They were shipped to NET for VOC analysis by USEPA

Method 8240.

Soil and groundwater samples submitted to Hydrologic's onsite laboratory were analyzed for

VOCs using Level II-equivalent Data Quality Objectives (DQOs). Soil and groundwater samples

submitted to NET were analyzed using a Level III-equivalent DQO for 95% of the samples and

a Level IV-equivalent DQO for 5% of the samples.

E/A&H validated the results of the surface soil samples. Validata Chemical Services, Inc., of

Norcross, Georgia, validated the analytical results of the NET confirmation samples collected

during the DPT investigation. Attachment 1 contains the validation report, which indicates that

the overall data quality of the analytical work is satisfactory.

**Hand-Auger Sampling Methods** 

On February 13, 1996, E/A&H collected three surface soil samples at SWMU 62 using a

3-inch-diameter, stainless-steel hand auger. The hand auger was advanced from land surface to

1 foot below land surface (bls) using a clockwise motion. The soil collected in the auger was

placed in a stainless-steel bowl for processing.

4-2

## **DPT Sampling Methods**

On May 15, 22, 25, and 26, 1995, E/A&H conducted a DPT survey at SWMU 62 to obtain subsurface soil and groundwater samples for VOC analyses. Subsurface Technologies, Inc. (SST), of Orlando, Florida, provided and operated the DPT equipment, consisting of truck-mounted, hydraulically operated probes which collected subsurface information. The piezocone system, which consists of an electronic cone penetrometer, was used to obtain lithologic information by estimating and plotting point-stress, sleeve friction, and pore pressure as it was advanced from ground surface, through the loess, and into the upper fluvial deposits. The geocone sampler, which is a split-spoon sampler with a push plug on the leading end, was advanced and retracted to retrieve relatively undisturbed subsurface soil samples from specific depths at various locations throughout the SWMU. The hydrocone (a GS-1 groundwater sampler) obtained groundwater samples from specific depths in the upper fluvial deposits, with and without an applied vacuum, and generated hydraulic conductivity information. DPT sampling methods are detailed in Section 4.4.4.3 of the *Comprehensive RFI Work Plan* (E/A&H, 1994).

# 4.1 Subsurface and Surface Soil Investigation

#### 4.1.1 Surface Soil Investigation

The Comprehensive Sampling Investigation Report for Assembly C (E/A&H, Revision 0 — November 1, 1995) stated that three surface soil samples would be collected from 0 to 1 foot bls — one immediately adjacent to each arresting gear pit and one next to the drywell. Figure 4-1 shows the sample locations. Each surface soil sample was collected with a decontaminated stainless-steel hand auger and immediately placed in a stainless-steel bowl in preparation for homogenization and containerization.

# Surface Soil Sampling Rationale

The surface soil samples were collected near the three most prominent features of the SWMU: the arresting gear pits and the drywell.



Revision 2: September 25, 1996

**Surface Soil Sample Collection Methods** 

An E/A&H representative collected the surface soil samples with a stainless-steel hand auger.

Upon retrieval, the soil was removed from the hand auger and placed in a stainless-steel bowl

for processing. Each sample was homogenized with a clean, stainless-steel spoon in accordance

with Section 4.2.10 of the Region IV USEPA Standard Operating Procedures/Quality Assurance

Manual and containerized as outlined in Section 4.4.4 of the Comprehensive RFI Work Plan

(E/A&H, 1994). After containerization, each sample was immediately placed on ice for

transport to the offsite laboratory. Sample location, designation, and time collected were

recorded in the field logbook.

4.1.2 DPT Subsurface Soil Investigation

The DPT investigation assessed the nature and extent of contamination in subsurface soil at

SWMU 62. Shallow subsurface soil samples (less than 3 feet bls) were collected from the loess

at each of the six DPT locations proposed in the Assembly C Site Investigation Plans

(E/A&H, 1995). No water-bearing zone was present in the loess; therefore, deeper (17 to

20 feet bls) subsurface soil samples were also collected from this unit. Figure 4-1 shows the

DPT sample locations.

**Subsurface Soil Sampling Rationale** 

Before collecting subsurface soil and groundwater samples, SST performed two piezocone

soundings (PO-1 and PO-6) to develop a tentative lithologic profile. PO-1 was advanced to the

west of the runway next to the drywell, and PO-6 was advanced near the eastern arresting gear

pit. Figure 4-1 shows the piezocone locations, and Appendix A contains the piezocone file

information and plots. As shown on the piezocone logs and plots, the water-bearing zone in the

fluvial deposits is readily identifiable at 38 feet bls (PO-1) and 32 feet bls (PO-6). The

piezocone information does not suggest that a water-bearing zone is present in the loess.

4-7

Revision 2: September 25, 1996

laboratory analysis.

The Assembly C Site Investigation Plans (E/A&H, 1995) proposed the following shallow soil-sampling intervals: 0 to 1 foot bls near the drywell (Locations 1, 2, 3, and 4) and 2 to 3 feet bls near the arresting gear pits (Locations 5 and 6). Due to poor sample recovery and the presence of roots and vegetation around the drywell, the 1- to 3-foot subsurface soil interval was sampled at Locations 1 and 3, and the 2- to 4-foot interval was sampled at Location 2. The 1- to 3-foot interval was sampled at Locations 4, 5, and 6 to obtain enough sample volume for

The Assembly C Site Investigation Plans (E/A&H, 1995) proposed collecting a subsurface soil sample from the soil/water interface in the loess if a groundwater sample could not be collected. The piezocone plots did not identify a water-bearing zone in the loess; moreover, split-spoon soil sampling confirmed the absence of groundwater in this zone. Therefore, as outlined in the work plan, a subsurface soil sample was collected from the loess at each of the six proposed DPT sampling stations from the 18- to 20-foot interval (except for Location 3, where the 17-to 19-foot interval was sampled). The following section provides details regarding the subsurface soil sampling procedures.

# **Subsurface Soil Sample Collection Methods**

An E/A&H geologist logged and processed the subsurface soil samples for field screening and submittal to the analytical laboratory. SST collected the samples with the DPT rig using a 2-foot long, 2-inch outside diameter, split-spoon geocone sampler. Upon retrieval, the sampler was opened, and the soil was immediately screened for organic vapors using an HNu (model GP 101, with a 10.2 eV lamp) photoionization detector. No organic vapors were detected. A representative soil sample was collected and placed in a jar for onsite VOC analysis by Hydrologic. Twenty-five percent of the soil samples were split and shipped to NET for confirmation analysis. A description of each soil sample; the field screening results; and sample location, designation, and time collected were recorded in the field logbook.

# 4.2 DPT Groundwater Investigation

The DPT groundwater investigation focused on the water-bearing zone in the fluvial deposits, which is a preferential zone of groundwater flow and a potential route for contaminant transport. As previously mentioned, the loess at SWMU 62 did not have a water-bearing zone capable of providing groundwater samples. The water-bearing zones at NSA Memphis are described in Section 5, Geology and Hydrogeology.

# **Groundwater Sampling Rationale**

As described in Section 4.1.1, two DPT piezocones were advanced at SWMU 62 to determine the depth of potential water-bearing zones in the loess and fluvial deposits. Based on the piezocone results, no water-bearing zone was identified in the loess, and depth to groundwater in the fluvial deposits ranged from 35 to 40 feet bls. To confirm the absence of a water-bearing zone in the loess, SST advanced the hydrocone to 18 feet bls at Location 1. After 15 minutes, a vacuum was applied to the sampler in an attempt to draw water into the collection device. The sampler was raised 1 foot every 15 minutes in an attempt to find a water-bearing zone, but no groundwater entered the sampler. This procedure was abandoned at 9 feet bls, and subsurface soil samples were collected as outlined in Section 4.1.1.

# **Groundwater Sample Collection Methods**

Groundwater samples were collected during the DPT investigation using the hydrocone. The SST technician advanced the hydrocone to refusal (between 37 and 42 feet bls) at each DPT location to obtain a groundwater sample from the fluvial deposits. The volume of groundwater entering the hydrocone was monitored on the on-board computer screen. When at least 100 milliliters of groundwater had entered the sampler, the hydrocone was retracted. Groundwater samples were collected directly from the sampler by inserting a new piece of Teflon tubing into the bottom port of the hydrocone and decanting the groundwater directly into the sample vials to minimize the loss of VOCs. If no groundwater entered the hydrocone after 30 minutes, a vacuum was applied to the sampling device. After an additional waiting period

Revision 2: September 25, 1996

(typically 20 minutes), if no water had entered the sampler, it was raised in 1-foot increments

every 15 minutes for 1.5 hours in an attempt to find a water-bearing zone.

E/A&H collected a fluvial deposits groundwater sample from Locations 1, 4, 5, and 6 at depths

ranging from 38 to 42 feet bls. No fluvial deposits groundwater sample could be collected from

Locations 2 and 3; sampler refusal was at 37 and 38 feet, respectively, which apparently was

not deep enough to penetrate the water-bearing zone in the fluvial deposits at these locations.

4.3 Sampling Protocol

The CSI sampling activities adhered to the approved Comprehensive RFI Work Plan and the

Assembly C Site Investigation Plans. Sample handling was minimized. When transferring

material from the sampling device to containers, the operation was conducted expediently, in as

clean an environment as possible. A new pair of disposable gloves was donned before collecting

each subsurface soil and groundwater sample. Empty containers were kept packaged until used,

at which time they were immediately chilled and isolated in coolers. Subsurface soil samples

for VOC analysis were containerized immediately upon collection to minimize the loss of VOCs.

Surface soil samples for SVOC, pesticide/PCB, and Appendix IX metals were thoroughly

homogenized prior to containerization. Groundwater samples were obtained directly from the

hydrocone.

4.3.1 QA/QC Samples

During the DPT investigation, QA/QC samples were collected to test the level of reproducibility

attainable in the sampling and analytical processes. QA/QC samples were analyzed for VOCs,

as were the associated environmental samples. Soil and groundwater duplicate samples,

collected at a frequency of 25% during the DPT investigation, were submitted to the offsite

laboratory (NET) for confirmation analysis. Duplicate sample analytical results are discussed

in Section 6, Nature and Extent of Contamination.

## 4.3.2 Sample Processing and Chain-of-Custody Procedure

Sample containers requiring chemical preservation (i.e., hydrochloric acid for aqueous samples) were preserved by the testing laboratory and shipped to E/A&H in sealed packages. Sample containers were labeled with the sample identification number, date, sampler's name, and requested analytical parameter, then placed in a cooler immediately following collection. Each sample was logged in the sample logbook. Samples for onsite laboratory analysis were transported by the E/A&H geologist directly to the onsite lab. The Hydrologic chemist recorded each sample in a sample logbook immediately upon receipt.

Samples submitted to NET were prepared for shipment by wrapping each container in bubble wrap, placing it in a resealable plastic bag, and packing it on ice inside a sturdy cooler. Cooler lids were secured with packing tape and sealed with signed custody seals. Packaged samples were then shipped overnight via FedEx priority service for next morning delivery. The offsite laboratory was notified the day of shipment of the number of samples submitted. NET reported all sample shipments arrived in good condition and at the appropriate temperature.

To ensure the integrity of the sample transfer process, a strict chain-of-custody procedure was implemented. This procedure was initiated in the field for each sampling event and conducted through custody transfer to the analytical laboratory. A chain-of-custody form was completed for each batch of samples, itemizing sample numbers, containerization, preservatives, analyses requested, date and time of sampling, and FedEx shipping number. Custody transfers were recorded by signature, date, and time of relinquishment, and receipt of custody by the parties involved.

# 4.3.3 Sample Labeling

All samples collected in the field were labeled with an alphanumeric code that identifies the site, sample type, and sample location. The first three digits identify the site location, and the fourth digit identifies the sample matrix (S = soil, G = groundwater). The last six digits identify the

Confirmatory Sampling Investigation Report

Assembly C -- SWMU 62, M-21 Arresting Gear

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

1 1 1 1 1 T

sample location and interval. For example, the sample label "062G006038" designates a

SWMU 62 groundwater sample collected from Location 6 at a depth of 38 feet. Note: An

exception to the labeling scheme occurred at Location 1. The first two digits identify the SWMU,

the second two digits identify the matrix (SG denotes a soil sample collected with the geocone,

GH denotes a groundwater sample collected with the hydrocone), and the last four digits identify

the sampling station and maximum depth of sample collection. For instance "62SG0120"

designates a SWMU 62 soil sample collected with the geocone sampler at Location 1 at a

maximum depth of 20 feet.

4.4 Grouting Procedures

SST filled each DPT boring with neat cement grout following sample collection.

4.5 Decontamination Procedures

SST's downhole field equipment was decontaminated in accordance with guidelines set forth in

the Assembly C Site Investigation Plans (E/A&H, 1995). All downhole and sampling equipment

was decontaminated before and after each use at either the central decontamination pad set up

at the N-7 aircraft wash rack, at the decontamination pad east of SWMU 40 across First Avenue,

or at the Southside decontamination pad. Rinse water generated from decontamination activities,

stored in a 1,200-gallon holding tank at the central decontamination pad, was discharged to the

sanitary sewer system after a VOC scan and approval from the City of Millington's wastewater

consultant, Fisher & Arnold, Inc.

Decontamination procedures for downhole equipment consisted of the following steps:

High-pressure wash with a hot soap and water mixture

Rinse with potable water

Rinse with deionized organic-free water

• Rinse twice with pesticide-grade isopropyl alcohol

- Rinse with deionized organic-free water
- Wrap with aluminum foil or plastic

A new pair of disposable nitrile gloves was donned before handling decontaminated sampling equipment. Subsurface soil samples were collected directly from the split-spoon sampler, groundwater samples directly from the hydrocone, and surface soil samples directly from the hand auger; therefore, no investigation-derived waste was generated from these sampling activities.

This page intentionally left blank.

### 5.0 GEOLOGY AND HYDROGEOLOGY

## 5.1 Regional Geology and Hydrogeology

The general hydrogeology of the Memphis area is discussed in detail in Section 2.11 and a conceptual model of the hydrogeology at the NSA is presented in Section 2.12 of the Comprehensive RFI Work Plan (E/A&H, 1994). Updated information is available in the Hydrogeology of Post-Wilcox Group Stratigraphic Units in the Area of the Naval Air Station Memphis, Near Millington, Tennessee (Kingsbury and Carmichael, 1995), provided in Attachment 2 of this document. On the basis of this updated information, the hydrogeology of NSA Memphis is re-summarized below.

The two stratigraphic units investigated during the RFIs at NSA Memphis are the loess/alluvial deposits of Pleistocene and Holocene age and the underlying fluvial deposits of Pleistocene to Pliocene age. The loess — eolian deposits consisting of silt, silty clay, clay, and minor amounts of sand — is the principal unit occurring at land surface throughout the NSA Memphis Northside. Alluvium, which is restricted to stream valleys, includes alluviated or reworked loess. The loess is typically 0 to 65 feet thick in the Memphis area; at NSA Memphis it ranges from 15 to 45 feet thick. Water-bearing zones are present in the loess primarily in the upper part of this unit; however, yields are low and water quality analyses performed during the water use survey portion of previous underground storage tank investigations indicate that loess groundwater does not meet many primary and secondary drinking water standards. Previous investigations at NSA Memphis have found depth to water in the loess varying between 5 and 15 feet bls and vertical hydraulic conductivities to range from 10-6 to 10-8 centimeter per second. Although the loess may be considered an aquitard on the basis of the relatively low hydraulic conductivities, this shallowest water-bearing zone is present within this interval. Groundwater flow in the loess is primarily downward, although locally some groundwater in the loess may discharge to nearby streams, drainage ditches, and other surface water bodies.

The fluvial deposits underlie the loess in upland areas and consist of sand, gravel, and some clay, with thin layers of ferruginous sandstone and conglomerate at the base. This unit ranges

from 0 to 100 feet thick in the Memphis area; on the Northside of NSA Memphis it ranges from

10 to 60 feet thick and represents the most significant component of the surficial aquifer. Many

shallow domestic wells in the Memphis rural areas are completed in the fluvial deposits.

Relative groundwater elevations between wells completed in the loess/alluvium and fluvial

deposits indicate semiconfined to confined conditions in the fluvial deposits. Typically a

downward vertical gradient exists between water in the loess and the fluvial deposits. Sediments

in the fluvial deposits generally coarsen with depth, and typically, the upper portion consists of

a mixture of very fine sand with varying degrees of silt and clay and becomes increasingly less

silty with depth, grading into a fine to medium sand near the middle of the unit. Grain sizes

typically coarsen below this interval, grading into a gravelly sand near the fluvial deposits basal

section.

The fluvial deposits are underlain by the Cockfield Formation, a part of the Jackson-upper

Claiborne confining unit, which is a heterogeneous formation consisting of very fine silty sand

interbedded with clay and silt lenses or clay with interbedded fine sand lenses. The Cockfield

Formation ranges in thickness from approximately 35 to 180 feet in the NSA Memphis area.

The more-permeable characteristics of the fluvial deposits, compared to the relatively

impermeable properties of the overlying loess/alluvium and the underlying Jackson-upper

Claiborne confining unit, result in the fluvial deposits being the preferential zone of groundwater

flow and the route for contaminant transport in NSA Memphis's subsurface.

5.2 Site-Specific Geology and Hydrogeology

The following sections provide site-specific geologic and hydrogeologic information obtained

from stratigraphic test borings, previous investigations, and the SWMU 62 DPT investigation.

## 5.2.1 USGS Stratigraphic Test Boring

The United States Geological Survey (USGS) drilled stratigraphic test hole 2 approximately 700 feet northwest of SWMU 62 in April 1994 (see Figure 1-1). Attachment 2 of this document contains a copy of the previously referenced Kingsbury and Carmichael publication, which provides a geologic cross-section showing test hole 2 (USGS designation Sh:U-98. This boring was drilled 22 feet into the top of the Cook Mountain Formation to better understand the site geology prior to monitoring well installations at NSA Memphis. Cuttings from the test hole were visually logged by a field geologist during drilling, and the test hole was geophysically logged following completion. The stratigraphy and lithologies encountered are as follows:

Loess: Approximately 45 feet of wind-blown silt deposits (loess).

These materials were described as silt and clay.

Fluvial Deposits: Approximately 51 feet of fluvial deposits. These materials

were described as sand and gravel.

Cockfield Formation: Approximately 82 feet of alternating sand, clay, and some

lignite.

Cook Mountain Formation: The Cook Mountain Formation was characterized as a

dense, light olive-gray to greenish-gray clay. It serves as the confining unit separating the Cockfield Formation from the Memphis aquifer. The termination depth of the boring was 200 feet bls, with the top of the Cook Mountain

Formation encountered at approximately 178 feet bls.

The USGS collected a Shelby-tube sample from stratigraphic test hole 2 for geotechnical analysis. The vertical permeability of a subsurface soil sample from the 199- to 200-foot interval (Cook Mountain Formation) was 4.5 x 10-5 cm/sec.

Confirmatory Sampling Investigation Report Assembly C — SWMU 62, M-21 Arresting Gear

NSA Memphis, Millington, Tennessee

Revision 2: September 25, 1996

**5.2.2 Previous Investigations** 

Site-specific subsurface soil information was collected while implementing the

Interim Measures (IM) investigation at SWMU 1, the Fire Department Drill Area, which is

approximately 500 feet northwest of SWMU 62 (see Figure 1-1). According to the

IM Investigation Report SOUTHNAVFACENGCOM, USGS, E/A&H, March 1993), visual

classification indicated low-permeability silts with varying degrees of clay extending to at least

44 feet bls. No permeability data for subsurface soil were collected at SWMU 1.

Based on the topography, the information in the conceptual model of the NSA Memphis

hydrogeology (Section 2.12 of the Comprehensive RFI Work Plan), recent data collected during

Assembly A SWMU RFIs, and communication with USGS representatives, groundwater in the

fluvial deposits flows locally toward the north-northwest. Groundwater flow in the loess is

primarily downward, although locally some groundwater in the loess may discharge to nearby

streams, drainage ditches, and other surface water bodies.

**5.2.3 DPT Piezocone Soundings** 

As outlined in Section 4.1.1 of this document, two piezocone soundings (designated PO-1 and

PO-6; refer to Figure 4-1) were performed at SWMU 62 to obtain information about the

lithology and potential water-bearing zones before collecting samples. Appendix A provides

piezocone logs and plots for SWMU 62. E/A&H used this information to select groundwater

sampling intervals for the DPT investigation. As shown on the piezocone logs, the potential

water-bearing zones in the fluvial deposits are below 38 feet at PO-1 and below 32 feet at PO-6.

These zones are described on the lithologic log as a cemented sand, silty fine sand, and fine sand

and are readily identifiable on the associated plots by the higher point stress. Based on the

piezocone logs and plots, no definitive water-bearing zone is present in the loess.

# **5.2.4 DPT Hydrocone Plots**

During the DPT investigations, the hydrocone obtained groundwater samples from specific depths in the fluvial deposits. The sampling device, which included a transducer attached to an on-board computer system via an umbilical cable, recorded the fill rate, hydrostatic pressure, and gas pressure. The computer estimated horizontal permeability by applying the time and rate-of-filling data to the standard Bouwer and Rice rate-of-rise permeability models. However, due to an instrument malfunction, only one horizontal permeability measurement was obtained during the SWMU 62 investigation. The horizontal hydraulic permeability of the fluvial deposits at Location 4 (Figure 4-1) was 4.59 x 10-5 cm/sec at a depth of 42 feet. Appendix A provides the hydrocone sample plot and horizontal permeability measurement for the groundwater sample collected from Location 4.

This page intentionally left blank.

### 6.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the results of the surface soil (0 to 1 foot bls), subsurface soil (> 1 foot bls), and groundwater samples collected during the CSI. Surface soil samples were analyzed for SVOCs, pesticides/PCBs, and Appendix IX metals. Subsurface soil and groundwater samples were analyzed for VOCs.

Detected concentrations of organics and inorganics have been compared with media-specific guidance concentrations from the USEPA Region III Risk-Based Concentration (RBC) Table (July to December 1995) to evaluate the risk associated with exposure to soil and groundwater contaminants and to assess the transfer potential of contaminants from soil to groundwater. In addition, metals concentrations for the soil samples are compared with established reference concentrations (RCs) derived from background samples at NSA Memphis to determine if they represent naturally occurring concentrations. Background RC calculations were provided in the Technical Memorandum — Assemblies A through D Background Reference Concentrations, E/A&H, September 18, 1996).

Specifically, surface soil sample results are compared with RCs, residential and industrial RBCs, and soil screening levels (SSLs); whereas subsurface soil sample results are compared with RCs and SSLs only (USEPA Region III RBC Table, July to December 1995). Groundwater sample results are compared with RBCs for tap water (USEPA Region III RBC Table, July to December 1995) and the USEPA maximum contaminant level (MCL) for drinking water (USEPA Drinking Water Regulations and Health Advisories, May 1995).

Section 6.1 briefly discusses the criteria used to determine the RCs (two times the mean background concentration) for metals. Section 6.2 summarizes the detected contaminants in soil compared with the respective RBC and/or SSL values. Contaminants identified in surface soil are further evaluated in the Preliminary Risk Evaluation (Section 7). Section 6.3 summarizes the detected constituents in groundwater compared with their RBC and MCL values. Contaminants detected at SWMU 62 are summarized in Section 6.4.

Revision 2: September 25, 1996

**6.1** Background Reference Concentrations

Background locations were established at five areas at NSA Memphis (shown on Figure 6-1) to

determine ambient soil and groundwater quality conditions. Background data for soil samples

only are discussed here as no SWMU 62 groundwater samples were analyzed for metals.

Background data for soil consist of 12 samples collected from five boring locations. The

background RCs for metals were calculated by doubling the mean concentration detected. Two

RCs were established for soil — one for surface soil (0 to 1 foot bls) and one for subsurface soil

(> 1 foot bls). Table 6-1 shows the RCs for metals detected in surface soil.

6.2 Soil Sample Analytical Results

The following sections summarize the results of soil samples collected during the CSI.

Appendix B contains the analytical data.

**6.2.1** Surface Soil Samples

E/A&H collected three surface soil samples from 0 to 1 foot bls. The samples were analyzed

for pesticides/PCBs, SVOCs, and Appendix IX metals. Figure 4-1 shows the surface soil

sampling locations, and Table 6-1 summarizes the detected contaminant concentrations.

Pesticides/PCBs

Two pesticides, 4,4'-DDT and dieldrin, were detected in one surface soil sample. The

4,4'-DDT concentration did not exceed its residential RBC or SSL. Although the dieldrin

concentration of 0.011 milligrams per kilogram (mg/kg) in surface soil sample 062S000801

exceeded the transfer from soil to groundwater SSL (0.001 mg/kg), it did not exceed the average

background concentration (0.131 mg/kg) stated in the June 2, 1995, Technical Memorandum

Discussion of Dieldrin Risk Management Issues (E/A&H, 1995) or its residential RBC

(0.04 mg/kg). As stated in the memorandum, dieldrin is ubiquitous at NSA Memphis as a result



This page intentionally left blank.

Table 6-1

Detected Concentrations of Metals, Pesticides, and SVOCs in Surface Soil

SWMU 62 — M-21 Arresting Gear

(data in milligrams per kilogram)

## Sample Location/ID

| Analyte                                | 7 (0 - 1')<br>062S000701 | 8 (0 - 1')<br>062S000801 | 9 (0 - 1')<br>062S000901 | RC•<br>0 - 1' | SSL          | RBC <sup>c</sup><br>Residential | RBC <sup>c</sup><br>Industrial |  |  |  |  |
|----------------------------------------|--------------------------|--------------------------|--------------------------|---------------|--------------|---------------------------------|--------------------------------|--|--|--|--|
| Metals                                 |                          |                          |                          |               |              |                                 |                                |  |  |  |  |
| Arsenic 10.5 10.4 9.7 13.2 15 0.43 3.8 |                          |                          |                          |               |              |                                 |                                |  |  |  |  |
| Barium                                 | 150                      | 113                      | 113                      | 191           | 32           | 5,500                           | 140,000                        |  |  |  |  |
| Cadmium                                | 4                        | 3.9                      | 2.9                      | ND⁴           | 6            | 39                              | 1,000                          |  |  |  |  |
| Chromium                               | 8.32 Je                  | 12                       | 8.9                      | 26.4          | 19           | 390                             | 10,000                         |  |  |  |  |
| Cobalt                                 | 10,5 J                   | 9.7 J                    | 8,6 J                    | 20.6          |              | 4,700                           | 120,000                        |  |  |  |  |
| Copper                                 | 18.9                     | 18.9                     | 18                       | 27            | <del>-</del> | 3,100                           | 82,000                         |  |  |  |  |
| Lead                                   | 11.7                     | 14.1                     | 11.1                     | 28.7          | Nones        | Nones                           | None≠                          |  |  |  |  |
| Nickel                                 | 19.4                     | 16.4                     | 16.3                     | ND            | 21           | 1,600                           | 41,000                         |  |  |  |  |
| Silver                                 | 3 J                      | ND                       | ND                       | ND            |              | 390                             | 10,000                         |  |  |  |  |
| Vanadium                               | 24.1                     | 25.4                     | 20                       | 49.6          | <del></del>  | 550                             | 14,000                         |  |  |  |  |
| Zinc                                   | 59                       | 54                       | 49.7                     | 88.3          | 42,000       | 23,000                          | 610,000                        |  |  |  |  |
| Tin                                    | 20.3 J                   | 22.5 J                   | 12 J                     | ND            |              | 47,000                          | 1,000,000                      |  |  |  |  |

# Table 6-1 Detected Concentrations of Metals, Pesticides, and SVOCs in Surface Soil SWMU 62 — M-21 Arresting Gear (data in milligrams per kilogram)

### Sample Location/ID

| Analyte                                 | 7 (0 - 1')<br>062S000701 | 8 (0 - 1')<br>062S000801 | 9 (0 - 1')<br>062S000901 | RC•<br>0 - 1' | SSL   | RBC <sup>c</sup><br>Residential | RBC <sup>c</sup><br>Industrial |  |  |  |  |
|-----------------------------------------|--------------------------|--------------------------|--------------------------|---------------|-------|---------------------------------|--------------------------------|--|--|--|--|
|                                         | Organic Compounds        |                          |                          |               |       |                                 |                                |  |  |  |  |
| <b>4,4'-DD</b> T ND 0.003 ND — 1 1.9 17 |                          |                          |                          |               |       |                                 |                                |  |  |  |  |
| Dieldrin                                | ND                       | 0.011                    | ND                       | 0.131h        | 0.001 | 0.04                            | 0.36                           |  |  |  |  |

#### Notes:

- RC = Reference concentration (2 x the mean background concentration). Background concentrations were established for the 0 to 1-foot and the greater than 1-foot intervals below land surface using analytical data from 12 soil samples collected from five background soil boring locations at various locations on the Northside and Southside of NSA Memphis (Technical Memorandum Assemblies A through D Background Reference Concentrations, E/A&H, September 18, 1996).
- b SSL = Soil Screening Level; obtained from the USEPA Region III RBC Table, July to December 1995.
- c RBC = Risk-based concentration; obtained from the USEPA Region III RBC Table, July to December 1995.
- <sup>d</sup> ND = Analyte was not detected.
- e J = Estimated concentration.
- r No guidance concentration exists for this analyte.
- Although there is no published SSL or RBC for lead, USEPA has published a recommended soil screening concentration of 400 mg/kg for residential land use and 1,000 mg/kg for industrial land use (Office of Solid Waste and Emergency Response Directive 9355.4-12).
  - = The June 2, 1995 Technical Memorandum Discussion of Dieldrin Risk Management Issues (E/A&H, 1995) states that the average concentration of dieldrin in samples collected during a background study at NSA Memphis was 0.131 mg/kg. Though background concentrations are normally assumed to be zero for organic compounds, this value has been included for comparison.

**Bold** indicates analyte exceeds the RC.

Italics indicates analyte exceeds the soil screening level.

LARGE PRINT indicates analyte exceeds the residential RBC.

Revision 2: September 25, 1996

of aerial applications during a U.S. Department of Agriculture quarantine on the white-fringed beetle during the 1950s and 1960s. Risk estimates based on the soil dieldrin concentrations at NSA Memphis did not exceed 1E-4 Incremental Lifetime Excess Cancer Risk (ILCR). The average concentration of samples collected during a background study was 0.131 mg/kg with a maximum detected concentration of 0.311 mg/kg. As stated in the memorandum, "This finding indicates that dieldrin levels found at each SWMU do not necessitate remedial action in the absence of other significant carcinogenic risk contributors." In addition, because of the chemical properties of dieldrin and the physical properties of soil, it is not expected to leach in appreciable quantities (if at all) into underlying groundwater.

**SVOCs** 

No SVOCs were detected in the surface soil samples collected from SWMU 62.

Appendix IX Metals

Twelve Appendix IX metals were detected in the surface soil samples (refer to Table 6-1). The residential and industrial RBCs for arsenic (0.43 mg/kg and 3.8 mg/kg, respectively) were exceeded in all three surface soil samples; however the detected arsenic concentrations (9.7 mg/kg to 10.5 mg/kg) did not exceed the RC (13.2 mg/kg) or the SSL (15 mg/kg). The barium concentration in all three samples (ranging from 113 mg/kg to 150 mg/kg) exceeded the SSL (32 mg/kg) but not the RC (191 mg/kg) or the residential RBC (5,500 mg/kg). Cadmium, nickel, silver, and tin concentrations exceeded their RCs but not their SSLs or RBCs.

**6.2.2** Subsurface Soil Samples

E/A&H collected 12 subsurface soil samples. Two intervals were sampled at each of the six DPT sampling locations as outlined in Section 4.1. The samples were analyzed for VOCs. Figure 4-1 shows the subsurface soil sampling locations, and Table 6-2 summarizes the detected contaminant concentrations.

# Table 6-2 Detected Concentrations of VOCs in Subsurface Soil SWMU 62 — M-21 Arresting Gear (data in milligrams per kilogram)

Sample Location/ID

|                    | 2 (18 - 20')      | 5 (18' - 20')        | 6 (18' - 20') |       |
|--------------------|-------------------|----------------------|---------------|-------|
| Analyte            | <b>062S000220</b> | 062S000520           | 062S000620    | SSL   |
| n-Propylbenzene    |                   | ND*                  | ND            |       |
| Methylene chloride | ND                | 0.002 J <sup>d</sup> | 0.001 J       | 0.010 |

#### Notes:

- SSL = Soil Screening Level; obtained from the USEPA Region III RBC Table, July to December 1995.
- b ND = Compound not detected.
- c No reference or guidance concentration exists for this analyte.
- J = Estimated concentration.

No VOCs were detected in soil samples at concentrations exceeding SSLs. The only VOCs detected in the subsurface soil samples were n-propylbenzene in the 18-to 20 foot interval sample at Location 2 (0.0053 mg/kg; no SSL exists), methylene chloride in the 18 to 20-foot interval sample from Location 5 (0.002 mg/kg; SSL = 0.010 mg/kg), and methylene chloride in the 18 to 20-foot sample from Location 6 (0.001 mg/kg). n-Propylbenzene is a common petroleum constituent, and methylene chloride is a common laboratory artifact.

# **6.3** Groundwater Samples

E/A&H collected groundwater samples from the fluvial deposits at Locations 1, 4, 5, and 6. The groundwater samples were analyzed for VOCs. Figure 4-1 shows the sampling locations, and Table 6-3 summarizes the detected VOCs concentrations.

Table 6-3
Detected Concentrations of VOCs in Groundwater
SWMU 62 — M-21 Arresting Gear
(data in micrograms per liter)
Sample Location/ID

| Analyte            | 5 (40' to 41')<br>062G005041 | RBC <sup>2</sup><br>Tap Water | MCL <sup>b</sup> Drinking Water |
|--------------------|------------------------------|-------------------------------|---------------------------------|
|                    | Q Te                         | 3,700                         |                                 |
| Methylene chloride | 1 J                          | 4.1                           | 5                               |
| Toluene            | 1.7                          | 750                           | 1,000                           |

### Notes:

- \* RBC = Risk-Based Concentration; obtained from the USEPA Region III RBC Table, July to December 1995.
- b MCL = Maximum Contaminant Level for Drinking Water; obtained from the USEPA Drinking Water Regulations and Health Advisories, May 1995.
- c J = Estimated concentration
- <sup>d</sup> = No guidance concentration exists for this analyte.

Revision 2: September 25, 1996

The only VOCs detected in fluvial deposits groundwater were in the confirmation samples analyzed by the offsite laboratory. The detected VOCs were toluene, acetone, and methylene chloride. No detected VOC exceeded its respective RBC for tap water or MCL for drinking water. Toluene was detected in one sample at 1 microgram per liter ( $\mu$ g/L) (RBC = 750  $\mu$ g/L, MCL = 1,000  $\mu$ g/L). Acetone was detected in one sample at 9  $\mu$ g/L (RBC = 3,700  $\mu$ g/L, no MCL exists). Methylene chloride was detected in one sample at 1  $\mu$ g/L (RBC = 4.1  $\mu$ g/L and MCL = 5  $\mu$ g/L). Acetone and methylene chloride are common laboratory artifacts. Figure 4-1 shows the DPT groundwater sampling locations.

### 6.4 Summary of Nature and Extent

Soil and groundwater analytical results indicate minimal contamination at SWMU 62. No SVOCs were detected in surface soil samples. No detected concentration of any pesticide in surface soil exceeded its residential RBC, and no metals in surface soil exceeded both the residential RBC and RC. No detected concentration of any VOC in subsurface soil exceeded its SSL. No groundwater contaminant exceeded its RBC for tap water or its MCL for drinking water. Figures 6-2 and 6-3 summarize surface soil and groundwater contaminants, respectively.

### Contaminant Transfer from Soil to Groundwater

Tables 6-1 and 6-2 provide SSL values for transfer from surface and subsurface soil to groundwater. Figure 6-4 illustrates that no contaminant in any soil sample exceeded both the RC (or background concentration for dieldrin) and the SSL.

This page intentionally left blank.







Confirmatory Sampling Investigation Report Assembly C — SWMU 62, M-21 Arresting Gear

NSA Memphis, Millington, Tennessee Revision 2: September 25, 1996

### 7.0 PRELIMINARY RISK EVALUATION

In accordance with Guidance on *Preliminary Risk Evaluations for the Purpose of Reaching a Finding of Suitability to Lease* (USEPA Region IV Memorandum, November 1994), a PRE was conducted for SWMU 62 to finalize the RCRA closure of the SWMU. Three surface soil samples were collected from unpaved areas — one next to each arresting gear pit and one next to the drywell (refer to Figure 4-1). The samples were shipped to an offsite laboratory (NET of Bedford, Massachusetts) under chain-of-custody documentation for the following analyses:

Analysis Method

SVOCs USEPA Method 8270

Chlorinated Pesticides/PCBs USEPA Method 8080

40 CFR 264 Appendix IX Metals USEPA Method 6010/7000 Series

A PRE is conducted by constructing a table for carcinogenic and systemic (noncarcinogenic) compounds. The maximum concentration for each detected chemical and its corresponding RBC concentration were entered into the table to calculate cumulative human health risk. Soil data used in the calculations are exclusively from samples collected across the surface soil interval (0 to 1 foot bls).

Proportionate risk is calculated for each detected site chemical by comparing its maximum reported concentration with the corresponding RBC value. Risk and hazard for residential and commercial scenarios were calculated separately. RBC values were calculated by USEPA based on a risk threshold of 10-6 for carcinogens or a hazard quotient threshold of 1.0 for noncarcinogens. Therefore, a risk ratio is calculated for each contaminant by one of the following two equations:

Confirmatory Sampling Investigation Report Assembly C --- SWMU 62, M-21 Arresting Gear

NSA Memphis, Millington, Tennessee Revision 2: September 25, 1996

Carcinogenic Risk Ratio:  $RR = \underline{media\ concentration} \times TR$ 

screening value

Noncarcinogenic Risk Ratio:  $RR = media \ concentration \times THQ$ 

screening value

where:

RR = the risk ratio

Media Concentration = the maximum concentration of a site chemical Screening Value = the RBC value for that particular chemical

TR = target risk used by USEPA to calculate RBCs for

carcinogens (10-6)

THQ = target hazard quotient used by USEPA to calculate RBCs

for noncarcinogens (1.0)

Tables 7-1 and 7-2 summarize PRE results for SWMU 62 for carcinogens and noncarcinogens, respectively. The risk ratios for each chemical are summed separately for both residential and commercial scenarios to determine the overall site risk. For each scenario, cumulative risk (for carcinogens) and cumulative hazard index (HI) (for noncarcinogens) are calculated separately, and the cumulative risk and HI are each compared to the corresponding cumulative threshold in accordance with the November 1994 USEPA Region IV Memorandum.

If the carcinogenic ILCR is greater than 10<sup>-4</sup> (the cumulative risk threshold) or the noncarcinogenic HI is greater than 1 (the cumulative HI threshold), the site may require additional investigation for the corresponding land use scenario (USEPA Region IV Memorandum, November 1994). If neither threshold is exceeded, the property is considered suitable to lease for the specified land use scenario.

TABLE 7-1
PRELIMINARY RISK EVALUATION FOR SWMU 62
RESIDENTIAL AND COMMERCIAL CARCINOGENS
NSA MEMPHIS RFI

|           | Reference     |         | Residential RBC |         | Commercial RBC |          |
|-----------|---------------|---------|-----------------|---------|----------------|----------|
|           | Concentration | Maximum | Carcinogen      | Risk    | Carcinogen     | Risk     |
| Parameter | (mg/kg)       | (mg/kg) | (mg/kg)         | Ratio   | (mg/kg)        | Ratio    |
| ' Arsenic | 13.1          | 10.5    | 0.43            |         | 3.8            |          |
| Barium    | 19.1          | 150     |                 |         |                |          |
| Cadmium   | ND            | 4       |                 |         |                |          |
| Chromium  | 26.4          | 12      |                 |         |                |          |
| Cobalt    | 15            | 10.5    |                 |         |                |          |
| Copper    | 23.6          | 18.9    |                 |         |                |          |
| 4,4'-DDT  |               | 0.003   | 1.9             | 1.6E-09 | 17             | 1.76E-10 |
| Dieldrin  |               | 0.011   | 0.04            | 2.8E-07 | 0.36           | 3.06E-08 |
| Lead      | 28.7          | 14.1    |                 |         |                |          |
| Nickel    | ND            | 19.4    |                 |         |                |          |
| Silver    | ND            | 3       |                 |         |                |          |
| Tin       |               | 22.5    |                 |         |                |          |
| Vanadium  | 49.6          | 25.4    |                 |         |                |          |
| Zinc      | 88.3          | 59      |                 |         |                |          |
|           |               | ILCR    | SUM             | 3E-07   | SUM            | 3E-08    |

### NOTES:

ILCR Incremental excess lifetime cancer risk
HI Hazard index

Blank spaces Indicates not applicable

ND Not detected

- All concentrations are in parts per million (mg/kg).
  - The maximum concentration reported for each contaminant was used to develop the table above.
  - Soil sample data were from the surface (0-1') interval only.
- Screening values (RBCs) are from the July to December 1995
  Risk-Based Concentration (RBC) Table (October 20, 1995 USEPA
  Region III RBC memo).
- The maximum lead (Pb) concentration reported at SWMU 62 was
   14.1 mg/kg. This is less than the 400 mg/kg residential soil
   screening level for total lead (USEPA OSWER Directive 9355.4-12).
- Metal was excluded from the risk ratio because the maximum reported concentration is less than the corresponding reference concentration.

TABLE 7-2
PRELIMINARY RISK EVALUATION FOR SWMU 62
RESIDENTIAL AND COMMERCIAL NONCARCINOGENS
NSA MEMPHIS RFI

|   |           | Reference<br>Concentration | Maximum | Residential RBC<br>Noncarcinogen | Hazard  | Commercial RBC<br>Noncarcinogen | Hazard  |
|---|-----------|----------------------------|---------|----------------------------------|---------|---------------------------------|---------|
|   | Parameter | (mg/kg)                    | (mg/kg) | (mg/kg)                          | Ratio   | (mg/kg)                         | Ratio   |
|   |           |                            |         |                                  |         |                                 | •       |
| * | Arsenic   | 13.1                       | 10.5    |                                  |         |                                 |         |
|   | Barium    | 19.1                       | 150     | 5500                             | 0.027   | 140000                          | 0.0011  |
|   | Cadmium   | ND                         | 4       | 39                               | 0.10    | 1000                            | 0.004   |
| * | Chromium  | 26.4                       | 12      | 390                              |         | 10000                           |         |
| * | Cobalt    | 15                         | 10.5    | 4700                             |         | 120000                          |         |
| * | Copper    | 23.6                       | 18.9    | 2900                             |         | 76000                           |         |
|   | 4,4'-DDT  |                            | 0.003   |                                  |         |                                 |         |
|   | Dieldrin  |                            | 0.011   |                                  |         |                                 |         |
|   | Lead      | 28.7                       | 14.1    |                                  |         |                                 |         |
|   | Nickel    | ND                         | 19.4    | 1600                             | 0.012   | 41000                           | 0.00047 |
|   | Silver    | ND                         | 3       | 390                              | 0.0077  | 10000                           | 0.0003  |
|   | Tin       |                            | 22.5    | 1000000                          | 0.00002 | 47000                           | 0.00048 |
| * | Vanadium  | 49.6                       | 25.4    | 550                              |         | 14000                           |         |
| * | Zinc      | 88.3                       | 59      | 23000                            |         | 610000                          |         |
|   |           |                            | н       | SUM                              | 0.14968 | SUM                             | 0.00632 |

### NOTES:

ILCR Incremental excess lifetime cancer risk

HI Hazard index

Blank spaces Indicates not applicable

ND Not detected

- All concentrations are in parts per million (mg/kg).
- The maximum concentration reported for each contaminant was used to develop the table above.
- Soil sample data were from the surface (0-1') interval only.
- Screening values (RBCs) are from the July to December 1995
  Risk-Based Concentration (RBC) Table (October 20, 1995 USEPA
  Region III RBC memo).
- The maximum lead (Pb) concentration reported at SWMU 62 was
  14.1 mg/kg. This is less than the 400 mg/kg residential soil
  screening level for total lead (USEPA OSWER Directive 9355.4-12).
- Metal was excluded from the risk ratio because the maximum reported concentration is less than the corresponding reference concentration.

This PRE does not evaluate the potential exposure that might be experienced by construction workers should site structures be excavated in the future. This would require an acute or subchronic assessment of subsurface soil data. For the site worker scenario, USEPA recommends an exposure duration of 25 years — a chronic exposure scenario. Exposure durations less than seven years, as would be assumed for a construction worker scenario, are considered acute or subchronic. RBCs would be less conservative if calculated based on a subchronic or an acute exposure scenario. USEPA used chronic-based toxicological information when calculating RBCs, or USEPA made conservative adjustments to reflect chronic exposure. In addition to the effect the exposure duration differences would have on a construction worker's cumulative risk and hazard estimates, toxicological information used by USEPA to calculate RBCs would be adjusted to reflect acute or subchronic toxicological endpoints rather than the chronic endpoints typically used. Acute and subchronic thresholds are based on lower exposure durations than chronic thresholds, and higher concentrations are generally necessary to elicit observable toxic effects. Higher thresholds for toxic effects result in less conservative toxicological information, which would be used to adjust RBCs for either acute or subchronic exposure. Because a construction worker would be exposed under either acute or subchronic conditions, and RBCs based on chronic exposure are generally more conservative, the commercial site worker scenario presented in this PRE would be a more conservative scenario than that for a construction worker. Subsurface soil concentrations would have to be significantly higher relative to those reported in surface soil to pose risk equivalent to that estimated for surface soil.

The Preferred Reuse Alternative in the *Base Reuse and Development Plan* (RKG Associates Inc., 1995), indicates the most likely reuse of the parcel of land containing SWMU 62 will be for airfield operations. Due to the nature of this proposed use, a commercial setting can be assumed to evaluate risk. With respect to the commercial scenario, the resulting ILCR and HI were well below the established criteria of 10<sup>-4</sup> and 1, respectively. In addition, the resulting

Revision 2: September 25, 1996

ILCR and HI for the residential scenario were below the established 104 ILCR threshold and

the HI threshold of 1.

**Conclusions and Recommendations** 

Based on the information gathered during this investigation, the following conclusions and

recommendations have been reached:

• SWMU 62 will likely be used for airfield operations.

• Fourteen pesticides and inorganics were detected in the three surface soil samples.

• The maximum reported concentration of arsenic exceeded residential and commercial

RBCs; however, the detected concentration does not exceed the reference (background)

concentrations as shown on Tables 7-1 and 7-2.

• Based on a PRE performed on data from the samples collected from 0 to 1 foot bls:

— Carcinogens — Neither the commercial nor residential ILCRs exceeded the 104

threshold, indicating suitability for lease with no further action for both

commercial and residential land use.

— Noncarcinogens — Neither the commercial nor residential HIs exceeded 1,

indicating suitability for lease with no further action for both commercial and

residential land use.

Revision 2: September 25, 1996

8.0 CONCLUSIONS AND RECOMMENDATIONS

Three surface soil samples collected near the arresting gear pits and drywell were analyzed for

SVOCs, pesticides/PCBs, and Appendix IX metals, and the results were used to prepare a PRE.

Twelve subsurface soil samples and four fluvial deposits groundwater samples were collected

near the arresting gear pits and the drywell associated with SWMU 62 and analyzed for VOCs.

Based on the information gathered during this investigation, the following conclusions and

recommendations have been reached:

• No SVOCs were detected in surface soil samples.

No detected concentration of any pesticide exceeded its residential RBC.

No detected concentration of any metal in surface soil exceeded both its residential RBC

and its SSL.

No detected concentration of any VOC in subsurface soil exceeded its SSL.

• No groundwater contaminant exceeded its RBC for tap water or its MCL for drinking

water.

The PRE concluded that the property is suitable for lease for either residential or

commercial land use.

Based on the results of the investigation and the PRE at SWMU 62, no further action is

recommended for this site.

This page intentionally left blank.

### 9.0 REFERENCES

- Bouwer, Herman, and R.C. Rice (June 1976). A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells. Water Resources Research, Vol. 12, No. 3, pp. 423-428.
- EnSafe/Allen and Hoshall (September 18, 1996). Technical Memorandum Assemblies A through D Background Reference Concentrations. E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1996). Assembly C Confirmatory Sampling Investigation Report,

  Naval Support Activity Memphis. Revision 1 (May 24, 1996). E/A&H:

  Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1995). Assembly C Confirmatory Sampling Investigation Report,

  Naval Support Activity Memphis. Revision 0 (November 1, 1995). E/A&H:

  Memphis, Tennessee.
- EnSafe/Allen & Hoshall (June 2, 1995). Discussion of Dieldrin Risk Management Issues
  Technical Memorandum, E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1995). Assembly C Site Investigation Plans, Naval Air Station Memphis. E/A&H: Memphis, Tennessee.
- EnSafe/Allen & Hoshall (1994). Comprehensive RFI Work Plan for Naval Air Station Memphis. E/A&H: Memphis, Tennessee.

- Kingsbury, James A. and John K. Carmichael (1995). Hydrogeology of Post-Wilcox Group Stratigraphic Units in the Area of Naval Air Station Memphis, Near Millington, Tennessee. U. S. Geological Survey Water-Resources Investigations Report 95-4011, one sheet.
- SOUTHNAVFACENGCOM, United States Geological Survey, EnSafe/Allen & Hoshall (March 1993). Technical Memorandum Interim Measures Field and Analytical Summary for SWMU 1. E/A&H: Memphis Tennessee.
- United States Environmental Protection Agency (1995). Risk-Based Concentration Table, July

   December, 1995. USEPA Region III: Philadelphia, Pennsylvania.
- United States Environmental Protection Agency (May 1995). Drinking Water Regulations and Health Advisories. USEPA: Washington, D.C.
- United States Environmental Protection Agency (November 22, 1994). Guidance on Preliminary Risk Evaluations for the Purpose of Reaching a Finding of Suitability to Lease (FOSL). USEPA Region IV: Atlanta, Georgia.
- United States Environmental Protection Agency (July 1994). OSWER Directive #9355.4-12:

  Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action
  Facilities. USEPA: Washington, D.C.
- United States Environmental Protection Agency (1991). Standard Operating Procedures and Quality Assurance Manual. USEPA Region IV: Atlanta, Georgia.
- United States Geological Survey (1995). Oral and written communication with Mr. Jack Carmichael. USGS: Nashville, Tennessee.

L:\CLEAN\T.094\ASSEMBLY.C\CSI\SWMU62.TXT

Appendix A

DPT Piezocone and Hydrocone Plots

PIEZOCONE SOUNDING LOG Page: 1

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

SOUNDING #: 62-P01 CLIENT: ENSAFE DATE: 05-15-1995

JOB NAME OR #: NASM094 LOCATION: SWMU62 ST1 DEPTH OF GROUNDWATER: 18 FE

| Depth  | PP     | PΤ      | SL           | FR     | Soil Type                | N     | VES    | FA     | RD     | YM     | USS    | SEN         | CM     | OCR   |
|--------|--------|---------|--------------|--------|--------------------------|-------|--------|--------|--------|--------|--------|-------------|--------|-------|
| ====== | ====== | ======= | ======       | ====== |                          | ===== | ====== | ====== | ====== | ====== | ====== |             | ====== | 322== |
| 4.00   | -0.14  | 92.69   | 0.59         | 0.63   | Silty Fine Sand          | 23    | 0.05   | >45    | 100+   | 204    |        |             | 556    |       |
| 5.00   | -0.17  | 92.43   | 1.12         | 1.22   | Silty Fine Sand          | 23    | 0.10   | >45    | 98     | 203    |        |             | 555    |       |
| 6.00   | 0.09   | 47.55   | 0.73         | 1.53   | Silty to Clayey F.S.     | 16    | 0.15   | >45    | 73     | 105    |        |             | 285    |       |
| 7.00   | -0.25  | 41.28   | 0.16         | 0.38   | Silty Fine Sand          | 10    | 0.20   | 44     | 65     | 91     |        |             | 248    |       |
| 8.00   | -0.03  | 56.71   | 0.40         | 0.70   | Silty Fine Sand          | 14    | 0.24   | 45     | 71     | 125    |        |             | 340    |       |
| 9.00   | 0.01   | 45.89   | 0.63         | 1.37   | Silty to Clayey F.S.     | 15    | 0.29   | 43     | 62     | 101    |        |             | 275    |       |
| 10.00  | -0.03  | 46.12   | 0.78         | 1.69   | Silty to Clayey F.S.     | 15    | 0.34   | 42     | 60     | 101    |        |             | 277    |       |
| 11.00  | -0.02  | 47.96   | 0.51         | 1.06   | Silty to Clayey F.S.     | 16    | 0.39   | 42     | 59     | 106    |        |             | 288    |       |
| 12.00  | -0.02  | 50.85   | 0.78         | 1.53   | Silty to Clayey F.S.     | 17    | 0.44   | 41     | 59     | 112    |        |             | 305    |       |
| 13.00  | -0.03  | 54.38   | 0.77         | 1.41   | Silty to Clayey F.S.     | 18    | 0.49   | 41     | 60     | 120    |        |             | 326    |       |
| 14.00  | 0.01   | 31.77   | 0.71         | 2.22   | Clayey Fine Sand         | 13    | 0.54   |        |        | 416    | 2.1    | 2.7         | 64     | >10   |
| 15.00  | -0.00  | 34.33   | 0.70         | 2.03   | Clayey Fine Sand         | 14    | 0.59   |        |        | 450    | 2.2    | 3.0         | 69     | >10   |
| 16.00  | -0.03  | 29.02   | 0.21         | 0.72   | Silty to Clayey F.S.     | 10    | 0.63   | 36     | 38     | 64     |        |             | 174    |       |
| 17.00  | -0.02  | 38.06   | 0.18         | 0.48   | Silty to Clayey F.S.     | 13    | 0.68   | 37     | 45     | 84     |        |             | 228    |       |
| 18.00  | -0.05  | 34.31   | 0.26         | 0.76   | Silty to Clayey F.S.     | 11    | 0.73   | 36     | 41     | 75     |        |             | 206    |       |
| 19.00  | 0.06   | 33.63   | 0.32         | 0.96   | Silty to Clayey F.S.     | 11    | 0.76   | 36     | 40     | 74     |        |             | 202    |       |
| 20.00  | -0.05  | 40.67   | 0.78         | 1.91   | Clayey Fine Sand         | 16    | 0.79   |        |        | 532    | 2.7    | 3.1         | 81     | >10   |
| ຳ1.00  | 0.21   | 12.49   | 0.54         | 4.34   | Clay                     | 12    | 0.82   |        |        | 156    | 0.8    | 1.4         | 62     | 4     |
| 2.00   | 0.29   | 11.95   | 0.11         | 0.91   | Clayey Fine Sand         | 5     | 0.85   |        |        | 148    | 0.7    | 6.6         | 60     | 3     |
| 23.00  | 0.28   | 15.75   | 0.20         | 1.27   | Clayey Fine Sand         | 6     | 0.88   |        |        | 198    | 1.0    | 4.7         | 79     | 5     |
| 24.00  | 0.31   | 9.34    | 0.15         | 1.61   | Sandy Clay               | 5     | 0.91   |        |        | 112    | 0.6    | 3.7         | 47     | 2     |
| 25.00  | 0.32   | 17.29   | 0.14         | 0.79   | Clayey Fine Sand         | 7     | 0.94   |        |        | 218    | 1.1    | 7.6         | 86     | 5     |
| 26.00  | 0.37   | 14.50   | 0.38         | 2.64   | Sandy Clay               | 7     | 0.97   |        |        | 180    | 0.9    | 2.3         | 73     | 4     |
| 27.00  | 0.34   | 20.55   | 0.65         | 3.15   | Sandy Clay               | 10    | 0.99   |        |        | 261    | 1.3    | 1.9         | 41     | 7     |
| 28.00  | 0.37   | 24.77   | 0.47         | 1.89   | Clayey Fine Sand         | 10    | 1.02   |        |        | 317    | 1.6    | 3.2         | 50     |       |
| 32.00  | 0.39   | 40.09   | 0 <b>.55</b> | 1.37   | Silty to Clayey F.S.     | 13    | 1.15   | 34     | 39     | 88     |        |             | 241    |       |
| 33.00  | 0.46   | 34.29   | 0.18         | 0.53   | Silty to Clayey F.S.     | 11    | 1.18   | 33     | 34     | 75     |        |             | 206    |       |
| 34.00  | 0.40   | 43.70   | 0.26         | 0.60   | Silty to Clayey F.S.     | 15    | 1.21   | 35     | 41     | 96     |        |             | 262    |       |
| 35.00  | 0.41   | 41.90   | 0.23         | 0.54   | Silty to Clayey F.S.     | 14    | 1.24   | 34     | 39     | 92     |        |             | 251    |       |
| 36.00  | 0.67   | 35.22   | 0.38         | 1.09   | Silty to Clayey F.S.     | 12    | 1.27   | 33     | 34     | 77     |        |             | 211    |       |
| 37.00  | 0.72   | 30.42   | 0.52         | 1.71   | Clayey Fine Sand         | 12    | 1.30   |        |        | 388    | 1.9    | 3 <b>.5</b> | 61     | 11    |
| 38.00  | 0.74   | 31.21   | 0.75         | 2.40   | Clayey Fine Sand         | 12    | 1.33   |        |        | 398    | 2.0    | 2.5         | 62     |       |
| 40.00  | -0.16  | 241.74  | 0.37         | 0.15   | Cemented Sand to HardPan | 40    | 1.40   | 43     | 87     | 532    |        |             | 1450   |       |
|        |        |         |              |        |                          |       |        |        |        |        |        |             |        |       |

PP - Pore Pressure (Kg/cm2)

PT - Point Bearing (Kg/cm2)

SL - Sleeve Friction (Kg/cm2)

FR - Friction Ratio (%)

GWD - Ground Water Depth

N - Equivalent SPT Blow Count (bpf)

VES - Vertical Effective Stress (Kg/cm2)

FA - Friction Angle (Degress)

RD - Relative Density (+ or - 5%)

YM - Youngs Modulus

USS - Undrained Sheer Strength

SEN - Sensitivity

CM - Constrained Modulus

OCR - Estimated Over Consolidation Ratio

The above data was computed utilizing SST's in-house correlations and guidelines published in 'Guidelines for Use and iterpretation of the Electronic Cone Penetration Test', Robertson and Campanella, September, 1989.



| SOUNDING #: 62-P06     | CLIENT: ENSAFE            | 1        | DATE: 05-22-19 | 995  |    |
|------------------------|---------------------------|----------|----------------|------|----|
| JOB NAME OR #: NASMO94 | LOCATION: SWMU62 ST6      | DEPTH OF | GROUNDWATER:   | 18   | FE |
| **********             | ************************* | *******  | ******         | **** |    |

| Depth | PP    | PT     | SL    | FR   | Soil Type                | N  | VES  | Fλ   | RD   | YM  | USS | SEN         | СМ   | OCR |
|-------|-------|--------|-------|------|--------------------------|----|------|------|------|-----|-----|-------------|------|-----|
|       |       |        |       |      |                          |    |      |      |      |     |     |             |      |     |
| 2.00  | -0.09 | 27.85  | 0.49  | 1.76 | Clayey Fine Sand         | 11 | 0.05 |      |      | 371 | 1.9 | 3.4         | 56   | >10 |
| 3.00  | 0.05  | 24.71  | 0.02  | 0.06 | Silty to Clayey F.S.     | 8  | 0.10 | >45  | 60   | 54  |     |             | 148  |     |
| 4.00  | 0.03  | 29.16  | 0.56  | 1.92 | Clayey Fine Sand         | 12 | 0.15 |      |      | 387 | 1.9 | 3.1         | 58   | >10 |
| 5.00  | 0.01  | 32.16  | 0.56  | 1.75 | Clayey Fine Sand         | 13 | 0.20 |      |      | 426 | 2.1 | 3.4         | 64   | >10 |
| 6.00  | 0.11  | 25.15  | 0.54  | 2.15 | Clayey Fine Sand         | 10 | 0.24 |      |      | 332 | 1.7 | 2.8         | 50   | >10 |
| 7.00  | 0.13  | 27.31  | 0.38  | 1.38 | Clayey Fine Sand         | 11 | 0.29 |      |      | 360 | 1.8 | 4.3         | 55   | >10 |
| 8.00  | 0.15  | 27.57  | 0.35  | 1.25 | Clayey Fine Sand         | 11 | 0.34 |      |      | 363 | 1.8 | 4.8         | 55   | >10 |
| 9.00  | 0.23  | 16.81  | 0.28  | 1.64 | Clayey Fine Sand         | 7  | 0.39 |      |      | 219 | 1.1 | 3.7         | 84   | >10 |
| 10.00 | 0.24  | 19.53  | 0.31  | 1.57 | Clayey Fine Sand         | 8  | 0.44 |      |      | 255 | 1.3 | 3.8         | 98   | >10 |
| 11.00 | 0.32  | 16.34  | 0.16  | 0.97 | Clayey Fine Sand         | 7  | 0.49 |      |      | 211 | 1.1 | 6.2         | 82   | >10 |
| 12.00 | 0.38  | 18.92  | 0.12  | 0.65 | Clayey Fine Sand         | 8  | 0.54 |      |      | 245 | 1.2 | 9.2         | 95   | >10 |
| 13.00 | 0.44  | 14.19  | 0.06  | 0.40 | Clayey Fine Sand         | 6  | 0.59 |      |      | 181 | 0.9 | 15.1        | 71   |     |
| 15.00 | 0.51  | 12.42  | -0.07 | 0.57 | Clayey Fine Sand         | 5  | 0.68 |      |      | 156 | 0.8 | 10.5        | 62   | 5   |
| 16.00 | 0.59  | 16.38  | 0.07  | 0.40 | Clayey Fine Sand         | 7  | 0.73 |      |      | 209 | 1.0 | 14.9        | 82   | 9   |
| 17.00 | 0.61  | 17.92  | 0.17  | 0.92 | Clayey Fine Sand         | 7  | 0.78 |      |      | 228 | 1.1 | 6.5         | 90   | 10  |
| 18.00 | 0.66  | 17.81  | 0.14  | 0.78 | Clayey Fine Sand         | 7  | 0.83 |      |      | 226 | 1.1 | 7 <b>.7</b> | 89   | 8   |
| 19.00 | 0.73  | 22.79  | 0.07  | 0.30 | Silty to Clayey F.S.     | 8  | 0.86 | 33   | 27   | 50  |     |             | 137  |     |
| വ.00  | 0.76  | 22.54  | 0.33  | 1.48 | Clayey Fine Sand         | 9  | 0.89 |      |      | 289 | 1.4 | 4.0         | 45   |     |
| .3.00 | 1.06  | 45.24  | 0.41  | 0.91 | Silty to Clayey F.S.     | 15 | 0.98 | 36   | 44   | 100 |     |             | 271  |     |
| 24.00 | 0.29  | 102.62 | 2.40  | 2.34 | Silty to Clayey F.S.     | 34 | 1.01 | 41   | 68   | 226 |     |             | 616  |     |
| 25.00 | 0.73  | 55.07  | 1.31  | 2.38 | Clayey Fine Sand         | 22 | 1.05 |      |      | 720 | 3.6 | 2.5         | 110  | >10 |
| 26.00 | 0.87  | 35.22  | 1.12  | 3.19 | Sandy Clay               | 18 | 1.07 |      |      | 455 | 2.3 | 1.9         | 70   | >10 |
| 27.00 | 0.95  | 37.41  | 0.39  | 1.06 | Silty to Clayey F.S.     | 12 | 1.10 | 34   | 37   | 82  |     |             | 224  |     |
| 28.00 | 1.01  | 32.37  | 0.29  | 0.91 | Silty to Clayey F.S.     | 11 | 1.13 | 33   | 33   | 71  |     |             | 194  |     |
| 29.00 | 1.14  | 43.49  | 0.23  | 0.52 | Silty Fine Sand          | 11 | 1.17 | 35   | 41   | 96  |     |             | 261  |     |
| 30.00 | 0.78  | 30.00  | 0.26  | 0.85 | Silty to Clayey F.S.     | 10 | 1.20 | 32   | 30   | 66  |     |             | 180  |     |
| 31.00 | 0.93  | 30.56  | 0.10  | 0.33 | Silty to Clayey F.S.     | 10 | 1.23 | 32   | 30   | 67  |     |             | 183  |     |
| 32.00 | -0.29 | 272.69 | 1.15  | 0.42 | Cemented Sand to HardPan | 45 | 1.26 | 44   | 92   | 600 |     |             | 1636 |     |
| 33.00 | 0.17  | 126.25 | 1.29  | 1.02 | Silty Fine Sand          | 32 | 1.29 | 40   | 70   | 278 |     |             | 757  |     |
| 34.00 | 0.05  | 191.25 | 0.71  | 0.37 | Fine Sand                | 38 | 1.33 | 42   | 82   | 421 |     |             | 1147 |     |
| 35.00 | -0.18 | 397.05 | 2.42  | 0.61 | Cemented Sand to HardPan | 66 | 1.36 | >45  | 100+ | 874 |     |             | 2382 |     |
|       |       |        | _ /   |      | Dana to natural          | 50 | 1,50 | . 13 | 1001 | V/1 |     |             |      |     |

PP - Pore Pressure (Kg/cm2)

N - Equivalent SPT Blow Count (bpf)

USS - Undrained Sheer Strength

PT - Point Bearing (Kg/cm2)

VES - Vertical Effective Stress (Kg/cm2)

SEN - Sensitivity

SL - Sleeve Friction (Kg/cm2)

FA - Friction Angle (Degress)

CM - Constrained Modulus

FR - Friction Ratio (%)

RD - Relative Density (+ or - 5%)

OCR - Estimated Over Consolidation Ratio

GWD - Ground Water Depth YM - Youngs Modulus

The above data was computed utilizing SST's in-house correlations and guidelines published in 'Guidelines for Use and Interpretation of the Electronic Cone Penetration Test', Robertson and Campanella, September, 1989.







Appendix B

Analytical Data

FORMAT: XXXX \ 1 2 3 4 5 6 7 8 9 0

XXXX \ OPTIONAL project prefix

· SITE where sample collected 1 2 3

· MATRIX / QC code

5 6 7 8 · SAMPLING LOCATION 90 - DEPTH, INTERVAL, SERIAL #

All spaces MUST be filled and no extra characters included. Use zeroes as space-fillers. Indicate MS/MSDs on COCs.

#### MATRIX/QC CODES:

- S soil (surface, borings, and trenches)
- C soil duplicate sample
- M sediment (settled, fluid-borne solid)
- N sediment duplicate
- G groundwater
- H groundwater duplicate sample
- W surface water
- R surface water duplicate sample
- U sludge
- Y sludge duplicate
- A air
- Z liquid waste (including IDW drums)
- V solid waste (including IDW drums)
- T trip blank
- E equipment rinsate blank
- D DI system blank
- P potable water blank
- F field blank
- L filter blank
- B EPA blind spike sample
- 2 cement blank
- ... 3 · drilling mud
  - 4 grout blank
  - 5 bentonite blank
  - 6 sand blank

# NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C

Page:

Time: 13:00

| APX9-METAL                                     |                                                                                                                                       | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 062-s-0007-01<br>062s000701<br>142608s<br>062s000701<br>Soil<br>MG/KG         |                      | 062-s-0008-01<br>062s000801<br>142609s<br>062s000801<br>Soil<br>MG/KG                                                           |            | 062-S-0009-01<br>062S000901<br>142610S<br>062S000901<br>Soil<br>MG/KG   |   |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|---|--|--|
| SB AS BA BE CD CR CO CU PB HG NI SE AG TL V ZN | Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury Nickel Selenium Silver Thallium Vanadium Zinc |                                                                                    | 7.3 10.5 150. 0.98 4. 8.3 10.5 18.9 11.7 0.12 19.4 0.49 3. 0.73 24.1 59. 20.3 | VAL UJ U U J U J U J | 7.2<br>10.4<br>113.<br>0.96<br>3.9<br>12.<br>9.7<br>18.9<br>14.1<br>0.12<br>16.4<br>0.48<br>0.72<br>0.72<br>25.4<br>54.<br>22.5 | n .<br>n . | 7.3 9.7 113. 0.97 2.9 8.9 8.6 18. 11.1 0.12 16.3 0.49 0.73 20. 49.7 12. | Π |  |  |
|                                                |                                                                                                                                       |                                                                                    |                                                                               |                      |                                                                                                                                 |            |                                                                         |   |  |  |

## NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62 - SURFACE SOIL SAMPLES

Page: 2 Time: 13:00

| SW846-PEST  SAMPLE ID  ORIGINAL ID>  LAB SAMPLE ID>  ID FROM REPORT>  SAMPLE DATE>  DATE EXTRACTED>  MATRIX>  UNITS>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 062S000701<br>142608<br>062S000701<br>02/13/96<br>02/15/96<br>02/20/96<br>Soil                                                                           | 062-S-0008-01<br>062S000801<br>142609<br>062S000801<br>02/13/96<br>02/15/96<br>02/20/96<br>Soil<br>UG/KG | 062-S-0009-01<br>062S000901<br>142610<br>062S000901<br>02/13/96<br>02/15/96<br>02/20/96<br>Soil<br>UG/KG                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| CAS # Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1695 VAL                                                                                                                                                 | 1695 VAL                                                                                                 | 1695 VAL                                                                                                                                    |  |
| 309-00-2 58-89-9 319-84-6 319-85-7 319-86-8 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8 7421-93-4 76-44-8 1024-57-3 72-43-5 8001-35-2 11141-16-5 11096-82-5 53494-70-5 5103-74-2 1114-16-5 12789-03-6 Aldrin gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC beta-BHC delta-BHC beta-BHC delta-BHC hellor delta-BHC beta-BHC delta-BHC beta-BHC delta-BHC hellor delta-BHC beta-BHC delta-BHC hellor alpha-BHC beta-BHC beta-BHC delta-BHC hellor alpha-BHC beta-BHC hellorane alpha-Obler for alpha-BHC beta-BHC hellorane alpha-Obler for alpha-BHC beta-BHC hellorane alpha-Obler for alpha-Chlordane for al | 2. U 2. U 2. U 2. U 41. U 4.1 U 41. NR NR NR NR NR NR NR | 2. U 2. U 2. U 2. U 40. U 4. U 4                                           | 2. U 2. U 2. U 2. U 2. U 41. U 4.1 U 41. U 41. U 41. U 41. U 41. U 41. NR NR NR NR NR NR NR |  |

## NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62 - SURFACE SOIL SAMPLES

Page: 3 Time: 13:00

| SW846-SVOA SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 062S000701<br>142608<br>062S000701<br>02/16/96<br>02/20/96<br>Soil                                                                                                                                                                                                                                                                                                                                                                                                     | 062-s-0008-01<br>062s000801<br>142609<br>062s000801<br>02/16/96<br>02/20/96<br>Soil<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                    | 062-\$-0009-01<br>062\$000901<br>142610<br>062\$000901<br>02/16/96<br>02/20/96<br>\$oil<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| CAS # Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1695 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1695 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1695 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 108-95-2   Phenol   bis(2-Chloroethyl)ether   95-57-8   2-Chlorophenol   1,3-Dichlorobenzene   1,4-Dichlorobenzene   1,2-Dichlorobenzene   95-48-7   2-Methylphenol (o-Cresol)   2,2'-oxybis(1-Chloropropane)   4-Methylphenol (p-Cresol)   N-Nitroso-di-n-propylamine   Hexachloroethane   Nitrobenzene   1sophorone   2-Nitrophenol   2,4-Dichlorophenol   120-83-2   120-82-1   91-20-3   1,2,4-Trichlorobenzene   Naphthalene   Hexachloroethoxy)methane   4-Chloro-3-methylphenol   2-Methylnaphthalene   Hexachlorocyclopentadiene   2,4,6-Trichlorophenol   2,4,5-Trichlorophenol   2,4,5-Trichlorophenol   2,4,5-Trichlorophenol   2,4,5-Trichlorophenol   2,4,5-Trichlorophenol   2,4,5-Trichlorophenol   2,2,6-Dinitrotoluene   2,6-Dinitrotoluene   3-Nitroaniline   Acenaphthylene   2,6-Dinitrotoluene   3-Nitroaniline   Acenaphthene   2,4-Dinitrophenol   2,4- | 410. U | 400. U | 410. U |       |
| 100-02-7 4-Nitrophenol<br>132-64-9 Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000. U<br>410. U                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000. U<br>400. U                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000. U<br>410. U                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T1) 4 |

## NSA MEMPHIS

NAS MEMPHIS, REI, ASSEMBLY C

Page: Time: 13:00

| ORIGINAL ID> 06<br>LAB SAMPLE ID> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62-\$-0007-01                                                                                                                                                                                  |                                         |                                                    |                                       | ·                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------------------|---------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|
| SAMPLE DATE>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62\$000701<br>42608<br>162\$000701                                                                                                                                                             |                                         | 062-S-0008-0<br>062S000801<br>142609<br>062S000801 | 11                                    | 062-S-0009-<br>062S000901<br>142610<br>062S000901 | -01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |  |
| DATE ANALYZED> 02<br>MATRIX> So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/16/96<br>12/20/96<br>Ioil<br>Ig/Kg                                                                                                                                                          |                                         | 02/16/96<br>02/20/96<br>Soil<br>ug/Kg              |                                       | 02/16/96<br>02/20/96<br>Soil<br>ug/Kg             |     | i de la companya de l | 1 |   |  |
| CAS # Parameter 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 695                                                                                                                                                                                            | VAL                                     | 1695                                               | VAL                                   | 1695                                              | VAL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 4 |  |
| 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 2-Methyl-4,6-Dinitrophenol 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 110-01-6 2-Methyl-4,6-Dinitrophenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene 8-74-8 20rabazole 84-74-2 206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 10deno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | 410.<br>410.<br>410.<br>1000.<br>1000.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410.<br>410. | ס ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | 400. 400. 400. 1000. 1000. 400. 400. 400           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 410. 410. 410. 1000. 1000. 410. 410. 410          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |  |

DATALCP3 10/30/95

## NAS MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62 - Primary Samples

Page: 1 Time: 11:27

| 1411 VAL  13. U 13. U 13. U 13. U 2. J 16. U 13. U 14. U 15. U 17. U 18. U 19. | 1411 VAL  10. U         | 1411 VAL  12. U                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13. U 13. U 13. U 14. U 15. U 16. U 17. U 18. U 18. U 19. U  | 10. U 10. U 10. U 10. U 11. J 9. J 10. U                                      | 12. U                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10. U | 12. U 12. U 12. U 12. U 12. UJ 12. UJ 12. U                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13. UJ 13. U                                                            | 13. UJ 10. U 13. U 10. U | 13.     UJ     10.     U     12.     UJ       13.     U     10.     U     12.     U       13.     U     10.     U     12.     U | 13.     UJ     10.     U     12.     UJ       13.     U     10.     U     12.     U       13.     U     10.     U     12.     U |

Sample Location:62SG0103 Lab File ID:nas66.001 Calibration Std.:vc0515.001 Date: 05/15/95 Blank: blk0515.001 Dilution:

|                             | Concen.   | Concen.      | Blank   |
|-----------------------------|-----------|--------------|---------|
| Compound                    | PID (ppb) | Hall (ppb)   | Concen. |
| Vinyl Chloride              | BDL       | BDL          |         |
| 1,1-Dichloroethene          | BDL       | BDL          |         |
| t-1,2-Dichloraethene        | BDL       | BOL          |         |
| c-1,2-Dichloroethene        | BDL       | BDL          |         |
| 1,1-Dichloropropene         | BDL       | BDL          |         |
| Benzene                     | BDL       | n/a          |         |
| Trichloroethene             | BDL       | BDL          |         |
| c-1,3-Dichloropropene       | BDL       | BDL          |         |
| t-1,3-Dichloropropene       | BDL       | BOL          |         |
| Toluene                     | BDL       | n/a          |         |
| Tetrachloroethene           | BDL       | BDL          |         |
| Chlorobenzene               | BDL       | BDL          |         |
| Ethylbenzene                | BDL       | n/a          |         |
| m,p-Xylenes                 | BDL       | n/a          |         |
| Styrene                     | BDL       | n/a          |         |
| o-Xylene                    | BDL       | n/a          |         |
| BFB (surrogate)             | 69.9      | 67. <b>7</b> |         |
| 40,42                       | BOL       | n/a          |         |
| n-Propylbenzene             | BDL       | n/a          |         |
| 2-Chlorotoluene             | BDL       | BDL          |         |
| 4-Chlorotoluene             | BDL       | BDL          |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a          |         |
| t-Butylbenzene              | BDL       | n/a          |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a          |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a          |         |
| 1,4-Dichlorobenzene         | BDL       | BDL          |         |
| p-isopropyltoluene          | BDL       | n/a          |         |
| 1,2-Dichlorobenzene         | BDL       | BDL          |         |
| n-Butylbenzene              | BDL       | n/a          |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL          |         |
| Naphthalene                 | BDL       | n/a          |         |
| Hexachlorobutadiene         | BOL       | BDL          |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL          |         |
| Dichlorofluoromethane       | n/a       | BDL          |         |
| Bromomethane                | n/a       | BDL          |         |
| Chloroethane                | n/a       | BDL          |         |
| Trichlorofluoromethane      | n/a       | BDL          |         |
| Methylenechloride           | n/a       | 12           | 12      |
| 1,1-Dichloroethane          | n/a       | BDL          |         |
| Bromochloromethane          | n/a       | BDL          |         |
| Chloroform                  | n/a       | BOL          |         |
| 2,2-Dichloropropane         | n/a       | BDL          |         |
| 1,2-Dichloroethane          | n/a       | BDL          |         |
| 1,1,1-Trichloroethane       | n/a       | BDL          |         |
| Carbon Tetrachloride        | n/a       | BDL          |         |
| Dibromomethane              | n/a       | BDL          |         |
| 1,2-Dichtoropropane         | n/a       | BDL          |         |
| Trichloroethene             | n/a       | BDL          |         |
| Bromodichloromethane        | п/а       | BDL          |         |
| 1,1,2-Trichloroethane       | n/a       | BDL          |         |
| 1,3-Dichloropropene         | n/a       | BDL          |         |
| Dibromochloromethane        | n/a       | BDL          |         |
| 1,2-dibromomethane          | n/a       | BDL          |         |
| 1,1,1,2-Tetrachioroethane   | n/a       | BDL          |         |
| Bromoform                   | n/a       | BDL          |         |
| 41,43                       | n/a       | BDL          |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL          |         |

Sample Location:63SG0120 Lab File ID:nas67.001 Calibration Std.:vc0515.001 Date: 05/15/95 Blank: blk0515.001 Dilution:

ution:

|                                           | Concen.    | Concen.    | Blank   |  |
|-------------------------------------------|------------|------------|---------|--|
| Compound                                  | PID (ppb)  | Hall (ppb) | Concen. |  |
| Vinyl Chloride                            | BDL        | BDL        |         |  |
| 1,1-Dichloroethene                        | BDL        | BDL        |         |  |
| t-1,2-Dichloroethene                      | BDL        | BDL        |         |  |
| c-1,2-Dichloroethene                      | BDL        | BDL        |         |  |
| 1,1-Dichloropropene                       | BDL        | BDL        |         |  |
| Benzene                                   | BDL        | n/a        |         |  |
| Trichloroethene                           | BDL        | BDL        |         |  |
| c-1,3-Dichloropropene                     | BDL        | BDL        |         |  |
| t-1,3-Dichloropropene                     | BDL        | BDL        |         |  |
| Toluene                                   | BDL        | n/a        |         |  |
| Tetrachloroethene                         | BDL        | BDL        |         |  |
| Chlorobenzene                             | BDL        | BDL        |         |  |
| Ethylbenzene                              | BDL        | n/a        |         |  |
| m,p-Xylenes                               | BDL        | n/a        |         |  |
| Styrene                                   | BDL        | n/a        |         |  |
| o-Xylene                                  | BDL        | n/a        |         |  |
| BFB (surrogate)                           | 74         | 73.2       |         |  |
| 40,42                                     | BDL        | n/a        |         |  |
| n-Propylbenzene                           | BOL        | n/a        |         |  |
| 2-Chlorotoluene                           | BDL        | BDL        |         |  |
| 4-Chlorotoluene                           | BDL        | BDL        |         |  |
| 1,3,5-Trimethylbenzene                    | BDL        | n/a        |         |  |
| t-Butylbenzene                            | BDL<br>BDL | n/a        |         |  |
| 1,2,4-Trimethylbenzene                    |            | n/a        |         |  |
| s-butylbenzene/1,3-DCB                    | BDL        | n/a        |         |  |
| 1,4-Dichlorobenzene                       | BDL<br>BDL | BDL<br>n/a |         |  |
| p-Isopropyltoluene<br>1,2-Dichlorobenzene | BDL<br>BDL | BDL        |         |  |
| n-Butylbenzene                            | BDL        | n/a        |         |  |
| 1,2,4-Trichlorobenzene                    | BDL        | BDL        |         |  |
| Naphthalene                               | BDL        | n/a        |         |  |
| Hexachlorobutadiene                       | BDL        | BDL        |         |  |
| 1,2,3-Trichlorobenzene                    | BDL        | BDL        |         |  |
| Dichlorofluoromethane                     | n/a        | BDL        |         |  |
| Bromomethane                              | n/a        | BDL        |         |  |
| Chloroethane                              | n/a        | BDL        |         |  |
| Trichlorofluoromethane                    | n/a        | BDL        |         |  |
| Methylenechloride                         | n/a        | 9 ຼ        | 12      |  |
| 1,1-Dichloroethane                        | n/a        | BDL        |         |  |
| Bromochioromethane                        | n/a        | BDL        |         |  |
| Chloroform                                | n/a        | BDL        |         |  |
| 2,2-Dichloropropane                       | n/a        | BDL        |         |  |
| 1,2-Dichloroethane                        | n/a        | BDL        |         |  |
| 1,1,1-Trichloroethane                     | n/a        | BDL        |         |  |
| Carbon Tetrachloride                      | n/a        | BDL        |         |  |
| Dibromomethane                            | n/a        | BDL        |         |  |
| 1,2-Dichloropropane                       | n/a        | BDL        |         |  |
| Trichloroethene                           | n/a        | BDL        |         |  |
| Bromodichloromethane                      | n/a        | BDL        |         |  |
| 1,1,2-Trichloroethane                     | n/a        | BDL        |         |  |
| 1,3-Dichloropropene                       | n/a        | BDL        |         |  |
| Dibromochloromethane                      | n/a        | BDL        |         |  |
| 1,2-dibromomethane                        | n/a        | BDL        |         |  |
| 1,1,1,2-Tetrachloroethane                 | n/a        | BDL        |         |  |
| Bromoform                                 | n/a        | BDL        |         |  |
| 41,43                                     | n/a        | BDL        |         |  |
| 1,2-Dibromo-3-chloropropene               | n/a        | BDL        |         |  |

#### HydroLogic Mobile Laboratory Analytical Results - Volatile Organic Compounds Memphis Naval Air Station

Sample Location:62GH0141 Lab File ID:nas65.001 Calibration Std.:vc0515.001 Date: 05/15/95 Blank: blk0515.001 Dilution:

|                             | Concen.    | Concen.    | Blank   |
|-----------------------------|------------|------------|---------|
| Compound                    | PID (ppb)  | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL        | BDL        |         |
| 1,1-Dichloroethene          | BDL        | BDL        |         |
| t-1,2-Dichtoroethene        | BDL        | BDL        |         |
| c-1,2-Dichloroethene        | BDL        | BDL        |         |
| 1,1-Dichloropropene         | BDL        | BDL        |         |
| Benzene                     | BOL        | n/a        |         |
| Trichloroethene             | BDL        | BDL        |         |
| c-1,3-Dichloropropene       | BDL        | BDL        |         |
| t-1,3-Dichloropropene       | BDL        | BDL        |         |
| Toluene                     | BDL        | n/a        |         |
| Tetrachloroethene           | BDL        | BDL        |         |
| Chlorobenzene               | BDL        | BDL        |         |
| Ethylbenzene                | BDL        | n/a        |         |
| m,p-Xylenes                 | BDL        | n/a        |         |
| Styrene                     | BDL        | n/a        |         |
| o-Xylene                    | BDL        | n/a        |         |
| BFB (surrogate)             | 85.8       | 105        |         |
| 40,42                       | BDL        | n/a        |         |
| n-Propylbenzene             | BDL        | n/a        |         |
| 2-Chloratoluene             | BDL        | BDL        |         |
| 4-Chlorotoluene             | BDL        | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL        | n/a        |         |
| • •                         | BDL        | n/a        |         |
| t-Butylbenzene              | BDL        | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL        | n/a        |         |
| s-butylbenzene/1,3-DCB      |            | BDL        |         |
| 1,4-Dichlorobenzene         | BDL<br>BDL |            |         |
| p-Isopropyitoluene          |            | n/a        |         |
| 1,2-Dichlorobenzene         | BDL        | BDL        |         |
| n-Butylbenzene              | BDL        | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL        | BDL        |         |
| Naphthalene                 | BDL        | n/a        |         |
| Hexachlorobutadiene         | BDL        | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL        | BDL        |         |
| Dichlorofluoromethane       | n/a        | BDL        |         |
| Bromomethane                | n/a        | BDL        |         |
| Chloroethane                | n/a        | BDL        |         |
| Trichlorofluoromethane      | n/a        | BDL        |         |
| Methylenechloride           | n/a        | BDL        | 12      |
| 1,1-Dichloroethane          | n/a        | BDL        |         |
| Bromochloromethane          | n/a        | BDL        |         |
| Chloroform                  | n/a        | BDL.       |         |
| 2,2-Dichloropropane         | n/a        | BDL        |         |
| 1,2-Dichloroethane          | n/a        | BDL        |         |
| 1,1,1-Trichloroethane       | n/a        | BDL        |         |
| Carbon Tetrachloride        | n/a        | BDL        |         |
| Dibromomethane              | n/a        | BDL        |         |
| 1,2-Dichloropropane         | n/a        | BDL        |         |
| Trichloroethene             | n/a        | BDL        |         |
| Bromodichloromethane        | n/a        | BDL        |         |
| 1,1,2-Trichloroethane       | n/a        | BDL        |         |
| 1,3-Dichloropropene         | n/a        | 8DL        |         |
| Dibromochloromethane        | n/a        | BDL        |         |
| 1.2-dibromomethane          | n/a        | BDL        |         |
| 1.1.1.2-Tetrachloroethane   | n/a        | BDL        |         |
| Bromoform                   | n/a        | BDL        |         |
| 41,43                       | n/a        | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a        | BDL        |         |

Sample Location:062S002004 Lab File ID:NAS121.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001 Dilution:

on:

| _                           | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BOL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| t-1,3-Dichloropropene       | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 60.4      | 51.2       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichtorobenzene         | BDL       | BDL        |         |
| p-Isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechloride           | n/a       | 10.        | 14      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:062S002020 Lab File ID:NAS120.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001 Dilution:

0.887

|                                     | Concen.    | Concen.     | Blank   |
|-------------------------------------|------------|-------------|---------|
| Compound                            | PID (ppb)  | Hall (ppb)  | Concen. |
| Vinyl Chloride                      | BDL        | BDL         |         |
| 1.1-Dichloroethene                  | BDL        | BDL         |         |
| t-1,2-Dichloroethene                | BDL        | BDL         |         |
| c-1,2-Dichloroethene                | BDL        | BDL         |         |
| 1,1-Dichloropropene                 | BDL        | BDL         |         |
| Benzene                             | BDL        | n/a         |         |
| Trichloroethene                     | BDL        | BDL         |         |
| c-1,3-Dichloropropene               | BDL        | BDL         |         |
| t-1,3-Dichloropropene               | BDL        | BOL         |         |
| Toluene                             | BDL        | n/a         |         |
| Tetrachloroethene                   | BDL        | BDL         |         |
| Chiorobenzene                       | BDL        | BDL         |         |
|                                     | BDL        | n/a         |         |
| Ethylbenzene                        | BDL        | n/a         |         |
| m,p-Xylenes                         | BDL<br>BDL | n/a<br>n/a  |         |
| Styrene                             |            |             |         |
| o-Xylene                            | BDL        | n/a         |         |
| BFB (surrogate)                     | 67.2       | 68.8        |         |
| 40,42                               | BDL        | n/a<br>- /- |         |
| n-Propylbenzene                     | 5.3        | n/a         |         |
| 2-Chlorotoluene                     | BDL        | BDL         |         |
| 4-Chlorotoluene                     | BDL        | BDL         |         |
| 1,3,5-Trimethylbenzene              | BDL        | n/a         |         |
| t-Butylbenzene                      | BDL        | n/a         |         |
| 1,2,4-Trimethylbenzene              | BDL        | n/a         |         |
| s-butylbenzene/1,3-DCB              | BDL        | n/a         |         |
| 1,4-Dichlorobenzene                 | BDL        | BDL         |         |
| p-isopropyitoluene                  | BDL        | n/a         |         |
| 1,2-Dichlorobenzene                 | BDL        | BDL         |         |
| n-Butylbenzene                      | BDL        | n/a         |         |
| 1,2,4-Trichlorobenzene              | BDL        | BDL         |         |
| Naphthalene                         | BDL        | n/a         |         |
| Hexachlorobutadiene                 | BDL        | BDL         |         |
| 1,2,3-Trichlorobenzene              | BDL        | BDL         |         |
| Dichlorofluoromethane               | n/a        | BDL         |         |
| Bromomethane                        | n/a        | BDL         |         |
| Chloroethane                        | n/a        | BDL         |         |
| Trichlorofluoromethane              | n/a        | BDL         |         |
| Methylenechloride                   | n/a        | 6           | 14      |
| 1,1-Dichloroethane                  | n/a        | BDL         |         |
| Bromochloromethane                  | n/a        | BDL         |         |
| Chloroform                          | n/a        | BDL         |         |
| 2,2-Dichloropropane                 | n/a        | BDL         |         |
| 1,2-Dichloroethane                  | n/a        | BDL         |         |
| 1,1,1-Trichloroethane               | n/a        | BDL         |         |
| Carbon Tetrachloride                | n/a        | BDL         |         |
| Dibromomethane                      | n/a        | BDL         |         |
|                                     | n/a        | BDL         |         |
| 1,2-Dichloropropane Trichloroethene | n/a<br>n/a | BDL         |         |
| Bromodichloromethane                | n/a        | BDL         |         |
| 1,1,2-Trichloroethane               |            | BDL         |         |
| • •                                 | n/a        |             |         |
| 1,3-Dichloropropene                 | n/a        | BDL         |         |
| Dibromochloromethane                | n/a        | BDL         |         |
| 1,2-dibromomethane                  | n/a        | BDL         |         |
| 1 1 1 2 Totrachloroothana           | n/a        | BDL         |         |
| 1,1,1,2-Tetrachloroethane           |            | 001         |         |
| Bromoform 41,43                     | n/a<br>n/a | BDL<br>BDL  |         |

Sample Location:062S003003 Lab File ID:NAS152.001 Calibration Std.:vc0526.001 Date: 05/26/95 Blank: blk0526.001 Dilution:

1:

|                                             | Concen.           | Concen.           | Blank   |
|---------------------------------------------|-------------------|-------------------|---------|
| ompound                                     | PID (ppb)         | Hall (ppb)        | Concen. |
| nyl Chloride                                | BDL               | BDL               |         |
| 1-Dichloroethene                            | BDL               | BDL               |         |
| 1,2-Dichloroethene                          | BDL               | BDL               |         |
| 1,2-Dichloroethene                          | BDL               | BDL               |         |
| 1-Dichloropropene                           | BDL               | BDL               |         |
| enzene                                      | BDL               | n/a               |         |
| richloroethene                              | BDL               | BDL               |         |
| 1,3-Dichloropropene                         | BDL               | BDL               |         |
| 1,3-Dichloropropene                         | BDL               | BDL               |         |
| oluene                                      | BDL               | n/a               |         |
| etrachioroethene                            | BOL               | BOL               |         |
| hlorobenzene                                | BDL               | BDL               |         |
| thylbenzene                                 | BDL               | n/a               |         |
| ,p-Xylenes                                  | BDL               | n/a               |         |
| tyrene                                      | BDL               | n/a               |         |
| -Xylene                                     | BDL               | n/a               |         |
| FB (surrogate)                              | 76.9              | 24.9              |         |
| 0,42                                        | BDL               | n/a               |         |
| -Propylbenzene                              | BDL               | n/a               |         |
| -Chlorotoluene                              | BDL               | BDL               |         |
| -Chlorotoluene                              | BDL               | BDL               |         |
| ,3,5-Trimethylbenzene                       | BDL               | n/a               |         |
| Butylbenzene                                | BDL               | n/a               |         |
| ,2,4-Trimethylbenzene                       | BDL               | n/a               |         |
| -butylbenzene/1,3-DCB                       | BDL.              | n/a               |         |
| 4-Dichlorobenzene                           | BDL               | BDL               |         |
| -isopropyltoluene                           | BDL               | n/a               |         |
| ,2-Dichlorobenzene                          | BDL               | BDL               |         |
| -Butylbenzene                               | BDL               | n/a               |         |
| ,2,4-Trichlorobenzene                       | BDL               | BDL               |         |
| aphthalene                                  | BDL               | n/a               |         |
| exachiorobutadiene                          | BDL               | BDL               |         |
| ,2,3-Trichlorobenzene                       | BDL               | BDL               |         |
| ich(orofluoromethane                        | n/a               | BDL               |         |
| romomethane                                 | п/а               | BDL               |         |
| hloroethane                                 | n/a               | BDL               |         |
| richlorofluoromethane                       | n/a               | 5                 | 16      |
| lethylenechloride                           | n/a               | 25                | 17      |
| ,1-Dichloroethane                           | n/a               | BDL               |         |
| romochloromethane                           | n/a               | BDL               |         |
| chloroform                                  | n/a               | BDL               |         |
| ,2-Dichloropropane                          | n/a.              | BDL               |         |
| ,2-Dichloroethane                           | n/a.              | BDL<br>BDL        |         |
| ,1,1-Trichloroethane                        | n/a               | BDL               |         |
| ,1,1-Trichloroethane<br>arbon Tetrachloride | n/a<br>n/a        | BDL               |         |
|                                             | n/a<br>n/a        | BDL               |         |
| ibromomethane                               | n/a               | BDL               |         |
| ,2-Dichloropropane                          |                   | BDL               |         |
| richloroethene                              | n/a .<br>n/a      | BDL               |         |
| romodichloromethane                         | •                 |                   |         |
| ,1,2-Trichloroethane                        | n/a               | BDL               |         |
| ,3-Dichtoropropene                          | n/a               | BDL               |         |
| ibromochloromethane                         | n/ <b>a</b>       | BDL<br>BDL        |         |
|                                             | n/a               | BDL               |         |
| ,2-dibromomethane                           |                   | 201               |         |
| ,1,1,2-Tetrachloroethane                    | n/a               | BDL               |         |
|                                             | n/a<br>n/a<br>n/a | BDL<br>BDL<br>BDL |         |

Sample Location:062S003019 Lab File ID:NAS153.001 Calibration Std.:vc0526.001 Date: 05/26/95 Blank: blk0526.001 Dilution:

ion:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BOL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | 8DL       | BDL        |         |
| t-1,3-Dichloropropene       | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachioroethene           | BDL       | BDL        |         |
| Chiorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | п/а        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 81.5      | 25.9       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| p-IsopropyItoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        | 16      |
| Methylenechloride           | n/a       | 24         | 17      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichtoroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:062S004003 Lab File ID:NAS150.001 Calibration Std.:vc0525.001 Date: 05/25/95 Blank: blk0525.001 Dilution:

on:

|                                            | Concen.     | Concen.    | Blank   |
|--------------------------------------------|-------------|------------|---------|
| Compound                                   | PID (ppb)   | Hall (ppb) | Concen. |
| Vinyl Chloride                             | BDL         | BDL        |         |
| 1,1-Dichloroethene                         | BDL         | BDL        |         |
| t-1,2-Dichloroethene                       | BDL         | BDL        |         |
| c-1,2-Dichloroethene                       | BDL         | BOL        |         |
| 1,1-Dichloropropene                        | BDL         | BDL        |         |
| Benzene                                    | BDL         | n/a        |         |
| Trichloroethene                            | BDL         | BDL        |         |
| c-1,3-Dichloropropene                      | BDL         | BDL        |         |
| t-1,3-Dichloropropene                      | BDL         | BDL        |         |
| Toluene                                    | BDL         | n/a        |         |
| Tetrachloroethene                          | BDL         | BDL        |         |
| Chlorobenzene                              | BOL         | BDL        |         |
| Ethylbenzene                               | BDL         | n/a        |         |
| •                                          | BDL         |            |         |
| m,p-Xylenes                                | BDL .       | n/a<br>-/- |         |
| Styrene                                    |             | n/a        |         |
| o-Xylene                                   | BDL         | n/a        |         |
| BFB (surrogate)                            | 78.4        | 99.3       |         |
| 40,42                                      | BDL         | n/a.       |         |
| n-Propylbenzene                            | BDL         | n/a        |         |
| 2-Chlorotoluene                            | BDL         | BDL        |         |
| 4-Chlorotoluene                            | BDL         | BDL        |         |
| 1,3,5-Trimethylbenzene                     | BDL         | n/a        |         |
| t-Butylbenzene                             | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene                     | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB                     | BDL         | n/a        |         |
| 1,4-Dichlorobenzene                        | BDL         | BDL        |         |
| p-Isopropyltoluene                         | BDL         | n/a        |         |
| 1,2-Dichlorobenzene                        | BDL         | BDL        |         |
| n-Butylbenzene                             | BDL         | n/a        |         |
| 1,2,4-Trichlorobenzene                     | BDL         | BDL        |         |
| Naphthalene                                | BDL         | n/a        |         |
| Hexachlorobutadiene                        | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene                     | BDL         | BDL        |         |
| Dichlorofluoromethane                      | n/a         | BDL        |         |
| Bromomethane                               | n/a         | BDL        |         |
| Chloroethane                               | n/a         | BDL        |         |
| Trichlorofluoromethane                     | n/a         | BDL        |         |
| Methylenechloride                          | n/a         | 8_         | 16      |
| 1,1-Dichloroethane                         | n/a         | BDL        |         |
| Bromochloromethane                         | n/a         | BDL        |         |
| Chloroform                                 | n/a         | BDL        |         |
| 2,2-Dichloropropane                        |             | BDL        |         |
| 1,2-Dichloroethane                         | n/a.<br>n/a | BDL        |         |
|                                            |             |            |         |
| 1,1,1-Trichloroethane Carbon Tetrachloride | n/a<br>n/a  | BDL<br>BDL |         |
|                                            | n/a         |            |         |
| Dibromomethane                             | n/a         | BDL        |         |
| 1,2-Dichloropropane                        | n/a         | BDL        |         |
| Trichtoroethene                            | n/a         | BDL        |         |
| Bromodichloromethane                       | n/a         | BDL        |         |
| 1,1,2-Trichloroethane                      | n/a         | BDL        |         |
| 1,3-Dichloropropene                        | n/a         | BDL        |         |
| Dibromochloromethane                       | n/a         | BDL        |         |
| 1,2-dibromomethane                         | n/a         | BDL        |         |
| 1,1,1,2-Tetrachloroethane                  | n/a         | BDL        |         |
| Bromoform                                  | n/a         | BDL        |         |
| 41,43                                      | n/a         | BDL        |         |
| 1,2-Dibromo-3-chloropropene                | n/a         | BDL        |         |

Sample Location:062S004020 Lab File ID:NAS149.001 Calibration Std.:vc0525.001 Date: 05/25/95 Blank: blk0525.001 Dilution:

|                             | Concen.     | Concen.    | Blank   |
|-----------------------------|-------------|------------|---------|
| Compound                    | PiO (ppb)   | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL         | BDL        |         |
| 1,1-Dichloroethene          | BDL         | BDL        |         |
| t-1,2-Dichloroethene        | BDL         | BDL        |         |
| c-1,2-Dichloroethene        | BDL         | BDL        |         |
| 1,1-Dichloropropene         | BOL         | BDL        |         |
| Benzene                     | BDL         | n/a        |         |
| Trichloroethene             | BDL         | BDL        |         |
| c-1,3-Dichloropropene       | BDL         | BDL        |         |
| t-1,3-Dichloropropene       | BDL         | BDL        |         |
| Toluene                     | BDL         | n/a        |         |
| Tetrachloroethene           | BOL         | BDL        |         |
| Chlorobenzene               | BDL         | BDL        |         |
| Ethylbenzene                | BDL         | n/a        |         |
| m,p-Xylenes                 | BDL         | n/a        |         |
| Styrene                     | BDL         | n/a        |         |
| o-Xylene                    | BDL         | n/a        |         |
| BFB (surrogate)             | 83          | 110        |         |
| 40,42                       | BDL         | n/a        |         |
| n-Propylbenzene             | BDL         | n/a        |         |
| 2-Chiorotoluene             | BDL         | BDL        |         |
| 4-Chlorotoluene             | BDL         | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL         | n/a        |         |
| t-Butylbenzene              | BDL         | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL         | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL         | n/a        |         |
| 1,4-Dichlorobenzene         | BOL         | BDL        |         |
| p-IsopropyItoluene          | BDL         | n/a        |         |
| 1,2-Dichlorobenzene         | BDL         | BDL        |         |
| n-Butylbenzene              | BDL         | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL         | BDL        |         |
| Naphthalene                 | BDL         | n/a        |         |
| Hexachlorobutadiene         | BDL         | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL         | BDL        |         |
| Dichlorofluoromethane       | п/а         | BDL        |         |
| Bromomethane                | n/a         | BDL        |         |
| Chloroethane                | n/a         | BDL        |         |
| Trichlorofluoromethane      | n/a         | BDL        |         |
| Methylenechloride           | n/a         | 8 ့        | 16      |
| 1,1-Dichloroethane          | n/a         | BDL        |         |
| Bromochloromethane          | n/a         | BDL        |         |
| Chloroform                  | n/a         | BDL        |         |
| 2,2-Dichloropropane         | n/a         | BDL        |         |
| 1,2-Dichloroethane          | n/a         | BDL        |         |
| 1,1,1-Trichloroethane       | n/a         | BDL        |         |
| Carbon Tetrachloride        | n/a         | BDL        |         |
| Dibromomethane              | n/a         | BDL        |         |
| 1,2-Dichloropropane         | n/a         | BDL        |         |
| Trichloroethene             | n/a         | BDL        |         |
| Bromodichloromethane        | n/a         | BDL        |         |
| 1,1,2-Trichloroethane       | n/a         | BDL        |         |
| 1,3-Dichloropropene         | n/ <b>a</b> | BDL        |         |
| Dibromochloromethane        | n/ <b>a</b> | BDL        |         |
| 1,2-dibromomethane          | n/a         | BDL        |         |
| 1,1,1,2-Tetrachioroethane   | n/a         | BDL        |         |
| Bromoform                   | n/a         | BDL        |         |
| 41,43                       | n/a         | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a         | BDL        |         |

Sample Location:062G004042 Lab File ID:NAS148.001 Calibration Std.:vc0525.001 Date: 05/25/95 Blank: blk0525.001 Dilution:

on:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | 8DL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| :-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichtoropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Frichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| -1,3-Dichloropropene        | BDL       | BDL        |         |
| l'oluene                    | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| n,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| >-Xylene                    | BDL       | n/a        |         |
| 3FB (surrogate)             | 94.5      | 139        |         |
| 10,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| -Butylbenzene               | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| o-Isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | 8DL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechloride           | n/a       | BOL        | 16      |
| 1,1-Dichloroethane          | n/a       | BOL        |         |
| Bromochloromethane          | n/a       | BOL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BOL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| richloroethene              | n/a       | BDL        |         |
| Bromodichloromethane        | п/а       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BOL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:062S005003 Lab File ID:NAS123.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001 Dilution:

ion:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL BDL    |         |
| c-1,2-Dichloroethene        | BDL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL       | BDL        |         |
| t-1,3-Dichloropropene       | BOL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 53.2      | 37.5       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| p-Isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | BDL        |         |
| Methylenechioride           | n/a       | 14         | 14      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | п/а       | BDL        |         |
| Chloroform                  | n/a       | BDL        |         |
| 2,2-Dichloropropane         | n/a       | BOL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachloride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | 8DL        |         |
| Bromodichloromethane        | п/а       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BOL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

•

Sample Location:062S005003 Lab File ID:NAS123A.001 Calibration Std.:vc0524.001 Date: 05/24/95 Blank: blk0524.001 Dilution:

|                                              | Concen.      | Concen.    | Blank   |
|----------------------------------------------|--------------|------------|---------|
| Compound                                     | PID (ppb)    | Hall (ppb) | Concen. |
| Vinyl Chloride                               | BDL          | BDL        |         |
| 1,1-Dichloroethene                           | BDL          | BDL        |         |
| -1,2-Dichloroethene                          | BDL          | BDL        |         |
| c-1,2-Dichloroethene                         | BDL          | BDL        |         |
| 1,1-Dichloropropene                          | BDL          | BDL        |         |
| Benzene                                      | BDL          | n/a        |         |
| Trichloroethene                              | BDL          | BDL        |         |
| c-1,3-Dichloropropene                        | BDL          | BDL        |         |
| t-1,3-Dichloropropene                        | BDL          | 8DL        |         |
| Toluene                                      | BDL          | n/a        |         |
| Tetrachloroethene                            | BDL          | BDL        |         |
| Chlorobenzene                                | BDL          | BDL        |         |
| Ethylbenzene                                 | BDL          | n/a        |         |
| m,p-Xylenes                                  | BDL          | n/a        |         |
| Styrene                                      | BDL          | n/a        |         |
| o-Xylene                                     | BDL          | n/a        |         |
| BFB (surrogate)                              | 63.5         | 28.2       |         |
| 40,42                                        | BDL          | n/a        |         |
| n-Propylbenzene                              | BDL          | n/a        |         |
| 2-Chlorotoluene                              | BDL          | BDL        |         |
| 4-Chlorotoluene                              | BDL          | BDL        |         |
| 1,3,5-Trimethylbenzene                       | BDL          | n/a        |         |
| t-Butylbenzene                               | BDL          | n/a        |         |
| 1,2,4-Trimethylbenzene                       | BDL          | n/a        |         |
| s-butylbenzene/1,3-DCB                       | BDL          | n/a        |         |
| 1,4-Dichlorobenzene                          | BDL          | BDL        |         |
| p-Isopropyitoluene                           | BDL          | n/a        |         |
| 1,2-Dichlorobenzene                          | BDL          | BDL        |         |
| n-Butylbenzene                               | BDL          | n/a        |         |
| 1,2,4-Trichlorobenzene                       | BDL          | BDL        |         |
| Naphthalene                                  | BDL          | n/a        |         |
| Hexachlorobutadiene                          | BDL          | BDL        |         |
| 1,2,3-Trichlorobenzene                       | BDL          | BDL        |         |
| Dichtorofluoromethane                        | n/a          | BDL        |         |
| Bromomethane                                 | n/a          | BDL        |         |
| Chloroethane                                 | n/a          | BDL        |         |
| Trichlorofluoromethane                       | n/a          | BDL        |         |
| Methylenechloride                            | n/a          | 32         | 15      |
| 1,1-Dichloroethane                           | n/a          | BDL        |         |
| Bromochloromethane                           | n/a          | BDL        |         |
| Chloroform                                   | n/a          | BDL        |         |
| 2,2-Dichloropropane                          | n/a          | BDL        |         |
| 1,2-Dichloroethane                           | n/a          | BDL        |         |
| 1,1,1-Trichloroethane                        | n/a          | BOL        |         |
| Carbon Tetrachloride                         | n/a          | BDL        |         |
| Dibromomethane                               | n/a          | BDL        |         |
| 1,2-Dichloropropane                          | n/a          | BDL        |         |
| Trichloroethene                              | n/a          | BDL        |         |
| Bromodichloromethane                         | n/a          | BDL        |         |
| 1.1.2-Trichloroethane                        | n/a          | BDL        |         |
| 1,3-Dichloropropene                          | n/a          | BDL        |         |
| Dibromochloromethane                         | n/a<br>n/a   | BDL        |         |
| Dibromochioromethane                         | n/a<br>n/a   | BDL        |         |
| 1,2-dipromomethane 1,1,1,2-Tetrachloroethane | n/a.<br>n/a. | BDL        |         |
| 1,1,1,2-Tetrachioroethane<br>Bromoform       | n/a.<br>n/a. | BDL        |         |
|                                              |              |            |         |
| 41,43                                        | n/a          | BDL<br>BDI |         |
| ,2-Dibromo-3-chloropropene                   | n/a          | BDL        |         |

Sample Location:062S005020 Lab File ID:NAS122.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001 Dilution:

Ullution:

|                             | Concen.    | Concen.    | Blank   |
|-----------------------------|------------|------------|---------|
| Compound                    | PiD (ppb)  | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL        | BDL        |         |
| 1,1~Dichloroethene          | BDL        | BDL        |         |
| t-1,2-Dichloroethene        | BDL        | BDL        |         |
| c-1,2-Dichloroethene        | BDL        | BDL        |         |
| 1,1-Dichloropropene         | BDL        | BDL        |         |
| Benzene                     | BDL        | n/a        |         |
| Trichloroethene             | BDL        | BDL        |         |
| c-1,3-Dichloropropene       | BDL        | BDL        |         |
| t-1,3-Dichloropropene       | BDL        | BOL        |         |
| Toluene                     | BDL        | n/a        |         |
| Tetrachioroethene           | BDL        | BDL        |         |
| Chlorobenzene               | BDL        | BDL        |         |
| Ethylbenzene                | BDL        | n/a        |         |
| m,p-Xylenes                 | BDL        | n/a        |         |
| Styrene                     | BDL        | n/a        |         |
| o-Xylene                    | BDL        | n/a        |         |
| BFB (surrogate)             | 65.8       | 58.1       |         |
| 40,42                       | BDL        | n/a        |         |
| n-Propylbenzene             | BDL        | n/a        |         |
| 2-Chlorotoluene             | BDL        | BDL        |         |
| 4-Chlorotoluene             | BDL        | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL        | n/a        |         |
| t-Butylbenzene              | BDL        | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL        | n/a        |         |
| s-butyibenzene/1,3-DCB      | BDL        | n/a        |         |
| 1,4-Dichlorobenzene         | BDL        | BDL        |         |
| p-Isopropyltoluene          | BDL        | n/a        |         |
| 1,2-Dichlorobenzene         | BDL        | BDL        |         |
| n-Butylbenzene              | BOL        | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL        | BDL        |         |
| Naphthalene                 | BDL        | n/a        |         |
| Hexachlorobutadiene         | BDL        | BDL        |         |
| 1,2,3-Trichlorobenzene      | BDL        | BDL        |         |
| Dichlorofluoromethane       | n/a        | BDL        |         |
| Bromomethane                | n/a        | BDL        |         |
| Chloroethane                | n/a        | BDL        |         |
| Trichlorofluoromethane      | n/a        | BDL        |         |
| Methylenechloride           | n/a        | 9_         | 14      |
| 1,1-Dichloroethane          | n/a        | BDL        | 1-7     |
| Bromochloromethane          | n/a        | BDL        |         |
|                             |            | BDL        |         |
| Chloroform                  | n/a<br>n/a | BDL<br>BDL |         |
| 2,2-Dichloropropane         |            | BDL        |         |
| 1,2-Dichloroethane          | n/a        |            |         |
| 1,1,1-Trichloroethane       | n/a        | BDL<br>BDL |         |
| Carbon Tetrachloride        | n/a        |            |         |
| Dibromomethane              | n/a        | BDL        |         |
| 1,2-Dichloropropane         | n/a        | BDL        |         |
| Trichloroethene             | n/a        | BDL        |         |
| Bromodichloromethane        | n/a        | BDL        |         |
| 1,1,2-Trichtoroethane       | n/a        | BDL        |         |
| 1,3-Dichloropropene         | n/a        | BDL.       |         |
| Dibromochloromethane        | n/a        | BDL.       |         |
| 1,2-dibromomethane          | n/a        | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a        | BDL        |         |
| Bromoform                   | n/a        | BDL        |         |
| 41,43                       | n/a        | BDL        |         |
| 1,2-Dibromo-3-chloropropene | n/a        | BDL        |         |

Sample Location:062G005041 Lab File ID:NAS119.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001 Dilution:

ilution:

|                                                 | Concen.    | Concen.    | Blank   |
|-------------------------------------------------|------------|------------|---------|
| Compound                                        | PID (ppb)  | Hall (ppb) | Concen. |
| /inyl Chloride                                  | BDL        | BDL        |         |
| 1,1-Dichloroethene                              | BDL        | BDL        |         |
| -1,2-Dichloroethene                             | BDL        | BDL        |         |
| c-1,2-Dichloroethene                            | BDL        | BDL        |         |
| 1,1-Dichloropropene                             | BDL        | BDL        |         |
| Benzene                                         | BDL        | n/a        |         |
| Trichtoroethene                                 | BDL        | BDL        |         |
| c-1,3-Dichloropropene                           | BDL        | BDL        |         |
| -1,3-Dichloropropene                            | BDL        | BDL        |         |
| Toluene                                         | BDL        | n/a        |         |
| Tetrachloroethene                               | BDL        | BDL        |         |
| Chlorobenzene                                   | BDL        | BDL        |         |
| Ethylbenzene                                    | BDL.       | n/a        |         |
| m,p-Xylenes                                     | BOL        | n/a        |         |
| Styrene                                         | BDL        | n/a        |         |
| o-Xylene                                        | BDL        | n/a        |         |
| BFB (surrogate)                                 | 73.9       | 76.1       |         |
| 40,42                                           | BDL        | n/a        |         |
| n-Propylbenzene                                 | BDL        | n/a        |         |
| 2-Chlorotoluene                                 | BDL        | BDL        |         |
| 4-Chlorotoluene                                 | BDL        | BDL        |         |
| 1,3,5-Trimethylbenzene                          | BDL        | n/a        |         |
| t-Butylbenzene                                  | BDL        | n/a        |         |
| 1,2,4-Trimethylbenzene                          | BDL        | n/a        |         |
| s-butylbenzene/1,3-DCB                          | BDL        | n/a        |         |
| 1,4-Dichlorobenzene                             | BOL        | BDL        |         |
| p-Isopropyitoluene                              | BDL        | n/a        |         |
| 1,2-Dichlorobenzene                             | BDL        | BDL        |         |
| n-Butylbenzene                                  | BDL        | n/a        |         |
| 1,2,4-Trichlorobenzene                          | BDL        | BDL        |         |
| Naphthalene                                     | BDL        | n/a        |         |
| Hexachlorobutadiene                             | BDL        | BDL        |         |
| 1,2,3-Trichlorobenzene                          | BDL        | BDL        |         |
| Dichlorofluoromethane                           | n/a        | BDL        |         |
| Bromomethane                                    | n/a.       | BDL        |         |
| Chloroethane                                    | n/a        | BDL        |         |
| Trichlorofluoromethane                          | n/a        | BDL        |         |
| Methylenechloride                               | n/a        | 6,         | 14      |
| 1.1-Dichloroethane                              | n/a        | BDL        |         |
| Bromochloromethane                              | n/a        | BDL        |         |
| Chloroform                                      | n/a        | BDL        |         |
| 2,2-Dichloropropane                             | n/a        | BDL        |         |
| 1,2-Dichloroethane                              | n/a        | BDL        |         |
| 1,1,1-Trichloroethane                           | n/a        | BDL        |         |
| Carbon Tetrachloride                            | n/a        | BDL        |         |
| Dibromomethane                                  | n/a        | BDL        |         |
| 1,2-Dichloropropane                             | n/a        | BDL        |         |
| Trichloroethene                                 | n/a        | BDL        |         |
| Bromodichloromethane                            | n/a.       | BDL        |         |
| 1,1,2-Trichtoroethane                           | n/a        | BDL        |         |
|                                                 | n/a        | BDL        |         |
| 1,3-Dichloropropene                             | n/a<br>n/a | BDL        |         |
| Dibromochloromethane                            |            |            |         |
| 1,2-dibromomethane                              | n/a<br>n/a | BDL        |         |
| 4 4 4 A Takanahlan                              | T1 / F8    | BDL        |         |
| 1,1,1,2-Tetrachloroethane                       |            |            |         |
| 1,1,1,2-Tetrachloroethane<br>Bromoform<br>41,43 | n/a<br>n/a | BDL<br>BDL |         |

Sample Location:062S006003 Lab File ID:NAS124.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001

...

Dilution:

|                             | Concen.   | Concen.    | Blank   |
|-----------------------------|-----------|------------|---------|
| Compound                    | PID (ppb) | Hall (ppb) | Concen. |
| Vinyl Chloride              | BDL       | BDL        |         |
| 1,1-Dichloroethene          | BDL       | BDL        |         |
| t-1,2-Dichloroethene        | BDL       | BDL        |         |
| c-1,2-Dichloroethene        | BOL       | BDL        |         |
| 1,1-Dichloropropene         | BDL       | BDL        |         |
| Benzene                     | BDL       | n/a        |         |
| Trichloroethene             | BDL       | BDL        |         |
| c-1,3-Dichloropropene       | BDL.      | BDL        |         |
| t-1,3-Dichloropropene       | BDL       | BDL        |         |
| Toluene                     | BDL       | n/a        |         |
| Tetrachloroethene           | BDL       | BDL        |         |
| Chlorobenzene               | BDL       | BDL        |         |
| Ethylbenzene                | BDL       | n/a        |         |
| m,p-Xylenes                 | BDL       | n/a        |         |
| Styrene                     | BDL       | n/a        |         |
| o-Xylene                    | BDL       | n/a        |         |
| BFB (surrogate)             | 59.5      | 47.4       |         |
| 40,42                       | BDL       | n/a        |         |
| n-Propylbenzene             | BDL       | n/a        |         |
| 2-Chlorotoluene             | BDL       | BDL        |         |
| 4-Chlorotoluene             | BDL       | BDL        |         |
| 1,3,5-Trimethylbenzene      | BDL       | n/a        |         |
| t-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trimethylbenzene      | BDL       | n/a        |         |
| s-butylbenzene/1,3-DCB      | BDL       | n/a        |         |
| 1,4-Dichlorobenzene         | BDL       | BDL        |         |
| p-Isopropyltoluene          | BDL       | n/a        |         |
| 1,2-Dichlorobenzene         | BDL       | BDL        |         |
| n-Butylbenzene              | BDL       | n/a        |         |
| 1,2,4-Trichlorobenzene      | BDL       | BDL        |         |
| Naphthalene                 | BDL       | n/a        |         |
| Hexachlorobutadiene         | BDL       | BDL        |         |
| 1,2,3-Trichlorobenzene      | BOL       | BDL        |         |
| Dichlorofluoromethane       | n/a       | BDL        |         |
| Bromomethane                | n/a       | BDL        |         |
| Chloroethane                | n/a       | BDL        |         |
| Trichlorofluoromethane      | n/a       | 8DL        |         |
| Methylenechloride           | n/a       | 14.        | 14      |
| 1,1-Dichloroethane          | n/a       | BDL        |         |
| Bromochloromethane          | n/a       | BDL        |         |
| Chloroform                  | n/a       | BDL.       |         |
| 2,2-Dichloropropane         | n/a       | BDL        |         |
| 1,2-Dichloroethane          | n/a       | BDL        |         |
| 1,1,1-Trichloroethane       | n/a       | BDL        |         |
| Carbon Tetrachtoride        | n/a       | BDL        |         |
| Dibromomethane              | n/a       | BDL        |         |
| 1,2-Dichloropropane         | n/a       | BDL        |         |
| Trichloroethene             | n/a       | BDL        |         |
| Bromodichloromethane        | n/a       | BDL        |         |
| 1,1,2-Trichloroethane       | n/a       | BDL        |         |
| 1,3-Dichloropropene         | n/a       | BDL        |         |
| Dibromochloromethane        | n/a       | BDL        |         |
| 1,2-dibromomethane          | n/a       | BDL        |         |
| 1,1,1,2-Tetrachloroethane   | n/a       | BDL        |         |
| Bromoform                   | n/a       | BDL        |         |
| 41,43                       | n/a       | BOL        |         |
| 1,2-Dibromo-3-chloropropene | n/a       | BDL        |         |

Sample Location:062S006020 Lab File ID:NAS125.001 Calibration Std.:vc0522.001 Date: 05/22/95 Blank: blk0522.001 Dilution:

|                                             | Concen.           | Concen.    | Blank   |
|---------------------------------------------|-------------------|------------|---------|
| Compound                                    | PID (ppb)         | Hall (ppb) | Concen. |
| /inyl Chloride                              | BDL               | BDL        |         |
| 1,1-Dichloroethene                          | BDL               | BDL        |         |
| -1,2-Dichloroethene                         | BDL               | BDL        |         |
| :-1,2-Dichloroethene                        | BOL               | BDL        |         |
| ,1-Dichloropropene                          | BOL               | BDL        |         |
| Benzene                                     | BDL               | n/a        |         |
| Frichloroethene                             | BDL               | BDL        |         |
| -1,3-Dichloropropene                        | BDL               | BDL        |         |
| -1,3-Dichloropropene                        | BDL               | BDL        |         |
| Toluene                                     | BDL               | n/a        |         |
| Tetrachloroethene                           | BDL               | BDL        |         |
| Chlorobenzene                               | BOL               | BDL        |         |
| Ethylbenzene                                | BDL               | n/a        |         |
| n,p-Xylenes                                 | BDL               | n/a        |         |
| Styrene                                     | BDL               | n/a        |         |
| Xylene                                      | BDL               | n/a        |         |
| 3FB (surrogate)                             | 55.7              | 39.7       |         |
| 10,42                                       | BDL               | n/a        |         |
| n-Propylbenzene                             | BDL               | n/a        |         |
| 2-Chlorotoluene                             | BDL               | BDL        |         |
| 4-Chlorotoluene                             | BOL               | BDL        |         |
| ,3,5-Trimethylbenzene                       | BDL               | n/a        |         |
| -Butylbenzene                               | BDL               | n/a        |         |
| 1,2,4-Trimethylbenzene                      | BDL               | n/a        |         |
| s-butylbenzene/1,3-DCB                      | BDL               | n/a        |         |
| ,4-Dichlorobenzene                          | BDL               | BDL        |         |
| -Isopropyltoluene                           | BDL               | n/a        |         |
| ,2-Dichtorobenzene                          | BDL               | BDL        |         |
| -Butylbenzene                               | BDL               | n/a        |         |
| ,2,4-Trichlorobenzene                       | BDL               | BDL        |         |
| Naphthalene                                 | BDL               | n/a        |         |
| -lexachlorobutadiene                        | BDL               | BDL        |         |
| 1,2,3-Trichlorobenzene                      | BDL               | BDL        |         |
| Dichlorofluoromethane                       | n/a               | BDL        |         |
| Bromomethane                                | n/a.              | BDL        |         |
| Chloroethane                                | n/a               | BDL        |         |
| Trichlorofluoromethane                      | n/a               | BDL        |         |
| Methylenechloride                           | n/a               | 12.        | 14      |
| ,1-Dichloroethane                           | n/a               | BDL        |         |
| Bromochloromethane                          | n/a               | BDL        |         |
| Chloroform                                  | n/a               | BDL        |         |
| 2,2-Dichloropropane                         | n/a               | BDL        |         |
| 1,2-Dichloroethane                          | n/a               | BDL        |         |
| 1,1,1-Trichloroethane                       | n/a               | BDL        |         |
| Carbon Tetrachloride                        | n/a               | BDL        |         |
| Dibromomethane                              | n/a               | BDL        |         |
| ,2-Dichloropropane                          | n/a               | BDL        |         |
| Trichtoroethene                             | n/a               | BDL        |         |
| Bromodichloromethane                        | n/a               | BDL        |         |
| 1,1,2-Trichloroethane                       | n/a               | BDL        |         |
| 1,3-Dichloropropene                         | n/a               | BDL        |         |
| n,3-Dichloropropene<br>Dibromochloromethane | n/a<br>n/a        | BDL        |         |
| 1,2-dibromomethane                          | n/a               | BDL        |         |
| 1.2-GIDIONIUNEUI&/18                        |                   | BDL        |         |
|                                             |                   |            |         |
| 1,1,1,2-Tetrachloroethane                   | n/a<br>n/a        |            |         |
|                                             | n/a<br>n/a<br>n/a | BDL<br>BDL |         |

...<u>.</u>

Sample Location:062G006038 Lab File ID:NAS118.001 Calibration Std.:vc0522.001

Date: 05/22/95 Blank: blk0522.001 Dilution:

n:

|                                                                       | Concen.    | Concen.    | Blank   |
|-----------------------------------------------------------------------|------------|------------|---------|
| Compound                                                              | PID (ppb)  | Hall (ppb) | Concen. |
| /inyl Chloride                                                        | BDL        | BDL        |         |
| I,1-Dichloroethene                                                    | BDL        | BDL        |         |
| -1,2-Dichloroethene                                                   | BDL        | BDL        |         |
| c-1,2-Dichloroethene                                                  | BDL        | BDL        |         |
| 1,1-Dichloropropene                                                   | BDL        | BDL        |         |
| Benzene                                                               | BDL        | n/a        |         |
| richloroethene                                                        | BDL        | BDL        |         |
| c-1,3-Dichloropropene                                                 | BDL        | BDL        |         |
| -1,3-Dichloropropene                                                  | BDL        | BDL        |         |
| Toluene                                                               | BDL        | n/a        |         |
| Tetrachloroethene                                                     | BDL        | BDL        |         |
| Chlorobenzene                                                         | BDL        | BDL        |         |
| Ethylbenzene                                                          | BDL        | n/a        |         |
| n,p-Xylenes                                                           | BDL        | n/a        |         |
| Styrene                                                               | BDL        | n/a        |         |
| o-Xylene                                                              | BDL        | n/a        |         |
| 3FB (surrogate)                                                       | 77,5       | 87.8       |         |
| 10,42                                                                 | BDL        | n/a        |         |
| n-Propylbenzene                                                       | BDL        | n/a        |         |
| 2-Chlorotoluene                                                       | BDL        | BDL        |         |
| I-Chlorotoluene                                                       | BDL        | BDL        |         |
| ,3,5-Trimethylbenzene                                                 | BDL        | n/a        |         |
| -Butylbenzene                                                         | BDL        | n/a        |         |
| ,2,4-Trimethylbenzene                                                 | BDL        | n/a        |         |
| :-butylbenzene/1,3-DCB                                                | BDL        | n/a        |         |
| ,4-Dichlorobenzene                                                    | BDL        | BDL        |         |
|                                                                       | BDL        | n/a        |         |
| ,2-Dichlorobenzene                                                    | BDL        | BDL        |         |
|                                                                       | BDL        |            |         |
| n-Butylbenzene                                                        | BDL        | n/a<br>BDL |         |
| ,2,4-Trichlorobenzene                                                 |            |            |         |
| laphthalene                                                           | BDL        | n/a        |         |
| lexachlorobutadiene                                                   | BDL        | BDL        |         |
| ,2,3-Trichlorobenzene                                                 | BDL        | BDL        |         |
| Dichlorofluoromethane                                                 | n/a        | BDL        |         |
| Bromomethane                                                          | n/a        | BDL        |         |
| Chloroethane                                                          | n/a        | BDL        |         |
| Trichlorofluoromethane                                                | n/a        | BDL        |         |
| Methylenechloride                                                     | n/a        | 5          | 14      |
| ,1-Dichloroethane                                                     | n/a        | BDL        |         |
| Bromochloromethane                                                    | n/a        | BDL        |         |
| Chloroform                                                            | n/a        | BDL        |         |
| 2,2-Dichloropropane                                                   | n/a        | BDL        |         |
| ,2-Dichloroethane                                                     | n/a        | BDL        |         |
| ,1,1-Trichloroethane                                                  | n/a        | BDL        |         |
| Carbon Tetrachloride                                                  | n/a        | BDL        |         |
| Dibromomethane                                                        | n/a        | BDL        |         |
| ,2-Dichloropropane                                                    | n/a        | BDL        |         |
| richloroethene                                                        | n/a        | BDL        |         |
| 3romodichloromethane                                                  | n/a        | BDL        |         |
| ,1,2-Trichloroethane                                                  | n/a        | BDL        |         |
| ,3-Dichloropropene                                                    | n/a        | BDL        |         |
|                                                                       | -/-        | BDL        |         |
| Dibromochloromethane                                                  | n/a        |            |         |
| ·                                                                     | n/a<br>n/a | BDL        |         |
| Dibromochloromethane                                                  |            | BDL<br>BDL |         |
| Dibromochloromethane<br>,2-dibromomethane                             | n/a        |            |         |
| libromochloromethane<br>,2-dibromomethane<br>,1,1,2-Tetrachloroethane | n/a<br>n/a | BDL        |         |

Attachment 1

**Data Validation Report** 





**CTO-094** 

Contract No: N62467-89-D-0318

Prepared for:

Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina

Prepared by:

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 (901) 383-9115

# **Table of Contents**

| 1.0 | INTRODUCTION |                                                                     |  |  |  |
|-----|--------------|---------------------------------------------------------------------|--|--|--|
|     | 1.1          | Organic Evaluation Criteria                                         |  |  |  |
|     |              | 1.1.1 Holding Times                                                 |  |  |  |
|     |              | 1.1.2 GC/MS Mass Calibration (Instrument Performance Checks)        |  |  |  |
|     |              | 1.1.3 Surrogate Spike Recoveries                                    |  |  |  |
|     |              | 1.1.4 Instrument Calibration                                        |  |  |  |
|     |              | 1.1.5 Matrix Spikes/Matrix Spike Duplicates                         |  |  |  |
|     |              | 1.1.6 Laboratory Control Samples and Laboratory Duplicates 8        |  |  |  |
|     |              | 1.1.7 Blank Analysis                                                |  |  |  |
|     |              | 1.1.8 Internal Standard Performance                                 |  |  |  |
|     |              | 1.1.9 Field Duplicate Precision                                     |  |  |  |
|     | 1.2          | Inorganic Evaluation Criteria                                       |  |  |  |
|     |              | 1.2.1 Holding Times                                                 |  |  |  |
|     |              | 1.2.2 Instrument Calibration                                        |  |  |  |
|     |              | 1.2.3 Blank Analysis                                                |  |  |  |
|     |              | 1.2.4 ICP Interference Check Samples                                |  |  |  |
|     |              | 1.2.5 Laboratory Control Samples                                    |  |  |  |
|     |              | 1.2.6 MS Analysis                                                   |  |  |  |
|     |              | 1.2.7 Laboratory Duplicates                                         |  |  |  |
|     |              | 1.2.8 ICP Serial Dilutions                                          |  |  |  |
|     |              | 1.2.9 AA Duplicate Injections and Postdigestion Spike Recoveries 15 |  |  |  |
|     |              | 1.2.10 Field Duplicate Precision                                    |  |  |  |
| 2.0 | DATA         | VALIDATION RESULTS — SWMU 26                                        |  |  |  |
|     | 2.1          | Data Quality 16                                                     |  |  |  |
|     | 2.2          | Blanks                                                              |  |  |  |
|     | 2.3          | Unusable Data                                                       |  |  |  |
| 3.0 | DATA         | VALIDATION RESULTS — SWMU 27                                        |  |  |  |
|     | 3.1          | Data Quality                                                        |  |  |  |
|     | 3.2          | Unusable Data                                                       |  |  |  |
|     | 3.3          | Blanks                                                              |  |  |  |
| 4.0 | DATA         | VALIDATION RESULTS — SWMU 62                                        |  |  |  |
|     |              | Data Quality                                                        |  |  |  |
|     |              | Blanks                                                              |  |  |  |
|     |              |                                                                     |  |  |  |

## List of Tables

| Table 1-1 | NSA Memphis Analytical Program | 1  |
|-----------|--------------------------------|----|
| Table 2-1 | SWMU 26 Sample IDs             | 16 |
| Table 2-2 | SWMU 26 Unusable Data          | 17 |
| Table 3-1 | SWMU 27 Sample IDs             | 17 |
| Table 3-2 | SWMU 27 Unusable Data          | 19 |
| Table 4-1 | SWMU 62 Sample IDs             | 20 |

## List of Attachments

Attachment A Data Validation Summary Narratives and Data Tables

## 1.0 INTRODUCTION

This report presents the analytical data collected during the Confirmatory Sampling Investigation of Naval Support Activity (NSA) Memphis Assembly C Solid Waste Management Units (SWMUs) 26, 27, and 62 and the quality assurance/quality control (QA/QC) evaluation of those data. The purpose of the data evaluation is to verify that the QC requirements of the data set have been met and to characterize the weakness of any questionable data.

The Assembly C soil and groundwater samples were collected at NSA Memphis during May and June 1995, and February and March 1996; submitted to National Environmental Testing, Inc., laboratory in Bedford, Massachusetts; and reported using U.S. Environmental Protection Agency (USEPA) Data Quality Objectives (DQO) Level III and IV equivalents. The analytical methods and DQO laboratory deliverables are summarized in Table 1-1.

Table 1-1 NSA Memphis Analytical Program

| Analytical Method                   | Data<br>Quality<br>Level | Method Reference                                                   | Site             |
|-------------------------------------|--------------------------|--------------------------------------------------------------------|------------------|
|                                     |                          | Full Scan                                                          |                  |
| Volatile Organic Compounds          | IV                       | SW-846 8240                                                        | SWMUs 27, 62     |
| Semivolatile Organic Compounds      | IV                       | SW-846 8270                                                        | SWMUs 26, 27, 62 |
| Pesticide/Polychlorinated biphenyls | IV                       | SW-846 8080                                                        | SWMUs 26, 27, 62 |
| Metals                              | IV                       | 40 CFR Part 264 Appendix IX (SW-846 6010/7060/7421/7471/7740/7841) | SWMUs 26, 27, 62 |

Note:

CFR = Code of Federal Regulations

The references for the methods listed in Table 1-1 were obtained from the following sources:

 USEPA Office of Solid Waste and Emergency Response (OSWER), Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, revised July 1992.

- USEPA Environmental Monitoring and Support Laboratory, *Methods for Chemical Analysis of Water and Wastes* (EPA-600/4-79-020, revised March 1983).
- USEPA Title 40 Code of Federal Regulations Part 264, Appendix IX (52 Federal Register 25947, July 1987).

Data were validated using the following documents (as appropriate):

- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, February 1994 (EPA-540/R-94/012). OSWER.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, (EPA-540/R-94/013). OSWER.

The NSA Memphis data were validated by either EnSafe/Allen and Hoshall (E/A&H) or E/A&H's subcontractors, Validata Chemical Services of Norcross, Georgia, or Heartland Environmental Services, Inc., of St. Charles, Missouri. The data were validated at DQO Level III. The data validation findings were summarized separately for each sample delivery group (SDG). Each SDG usually contained 20 samples of one matrix type, i.e., either a solid (soil and/or sediment) or water (groundwater and/or surface water) samples, except for QC samples. The validation summary reports and data summary tables are included in Attachment A to this document.

The following sections discuss the significant data validation findings for each SWMU. The following outlines the SWMUs for this project and the analytical parameters associated with each.

### **Data Validation Summary of the Investigative Samples:**

| Section 2 | Organic and Metals Data | SWMU 26 |
|-----------|-------------------------|---------|
| Section 3 | Organic and Metals Data | SWMU 27 |
| Section 4 | Organic and Metals Data | SWMU 62 |

## 1.1 Organic Evaluation Criteria

The USEPA methods described in the following define QC criteria that the laboratory must meet but the methods do not address data evaluation from a user's perspective:

- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods
- Methods for Chemical Analysis of Water and Wastes.

Evaluation criteria are available in *USEPA Contract Laboratory National Functional Guidelines* for Organic Data Review (Organic Functional Guidelines), February 1994, which was used throughout the data evaluation process when the analytical methods did not address data usability.

Data evaluation for samples collected at NSA Memphis included the following parameters:

- Holding times
- Gas chromatograph/mass spectrometry (GC/MS) instrument performance checks
- Surrogate spike recoveries
- Instrument calibration
- Matrix spike and matrix spike duplicates (MS/MSD)
- Blank analysis
- Internal standard performance
- Compound quantitation
- Field duplicate precision

According to Organic Functional Guidelines, when the QC parameters do not fall within the specific method guidelines, the data evaluator annotates or "flags" the corresponding compounds where deficiencies were found. The data from NSA Memphis were evaluated using this approach. The following flags were used to annotate data with laboratory and/or field deficiencies or problems:

- U Undetected The analyte was analyzed for but not detected or was also found in an associated blank, but at a concentration less than 10 times the blank concentration for common laboratory constituents (contaminants) or five times the blank concentration for other constituents; the associated value shown is the Practical Quantitation Limit (PQL).
- J Estimated Value One or more QC parameters were outside control limits or the concentration of the analyte was less than the PQL.
- UJ Undetected and Estimated The analyte was analyzed for but not detected above the listed estimated quantitation limit; the quantitation limit is estimated because at least one QC parameter was outside control limits.
- Diluted Result The compound was reanalyzed at a secondary dilution factor. If at least one compound was outside the calibration range during an initial analysis, the laboratory flags the analyte "E." When diluted, the sample results will be flagged "D." Generally, values from the initial analysis will be used except where the value exceeded the calibration range. Values exceeding the calibration range in the initial analysis will be substituted by the diluted value to ensure the most representative data. The "D" flag will remain on the value to alert the data user that the secondary dilution value was used.

R/UR Unusable Data — At least one QC parameter grossly exceeded control limits.

These validation flags were applied to data where data deficiencies were noted. Attachment A includes tables of all qualified data.

#### 1.1.1 Holding Times

Acceptable technical holding times are specified in the analytical methods. The sample holding time depends on the type of analysis and whether the sample was preserved. For water samples, the holding time for preserved volatile organic compound (VOC) analysis is 14 days from the collection date. Semivolatile organic compound (SVOC) and pesticide/polychlorinated biphenyl (PCB) water samples must be extracted within seven days and analyzed within 40 days after extraction. Holding times for soil matrices are not specified in SW-846. Therefore, data reviewers can apply the water sample holding times criteria to soil at their discretion.

#### 1.1.2 GC/MS Mass Calibration (Instrument Performance Checks)

Tuning and performance criteria are established to ensure that the data produced by the instrument may be correctly interpreted according to the requirements of the method being used. These criteria are not sample specific; conformance is determined using standard materials. Therefore, these criteria must be met in all circumstances. The performance standards for VOC (bromofluorobenzene [BFB]) and SVOC (decafluorotriphenylphosphine [DFTPP]) analyses are evaluated to determine if the data produced by the instrument may be correctly interpreted according to the method requirements. Performance standards must be analyzed within 12 hours of sample analysis, and the results must be within the established criteria.

#### 1.1.3 Surrogate Spike Recoveries

Surrogate compounds are added to samples and laboratory blanks before extraction and sample preparation to evaluate the effect of the sample matrix on extraction and measurement procedures. Surrogates are organic compounds which are chemically similar to analytes of interest but not normally found in environmental samples. Three surrogate compounds are added to samples for VOC analysis, eight are added to samples for SVOC analysis, and two are added

to pesticide/PCB samples. Percent recovery (%R) of the surrogates is calculated by comparing the amount of the compound recovered by the analysis to the amount added to the sample.

Below is a list of surrogate compounds recommended by the SW-846 methods.

| VOC Surrogates              | SVOC Surrogates              |
|-----------------------------|------------------------------|
| Toluene-d8 (TOL)            | Nitrobenzene-d5 (NBZ)        |
| BFB                         | 2-Fluorobiphenyl (FBP)       |
| 1,2-Dichloroethane (DCE)    | Terphenyl-d14 (TPH)          |
|                             | 2,4,6-Tribromophenol (TBP)   |
| Pesticide/PCB Surrogates    | Phenol-d5 (PHL)              |
| Tetrachloro-m-xylene (TCMX) | 2-Chlorophenol-d4 (2CP)      |
| Decachlorobiphenyl (DCB)    | 1,2-Dichlorobenzene-d4 (DCB) |

#### 1.1.4 Instrument Calibration

Instruments are initially and continually calibrated with standard solutions to verify that they are capable of producing acceptable quantitative data for the compounds.

Initial calibration (GC/MS): The instrument is initially calibrated at the beginning of the analytical run to check its performance and to establish a linear five-point calibration curve. The initial calibration is verified by calculating the relative response factor (RRF) and the percent relative standard deviation (%RSD) for each compound. An RRF less than 0.05 or a %RSD greater than 30% is outside the QC limits for the initial calibration.

Continuing calibration (GC/MS): Standard solutions are run periodically to check the daily performance of the instrument and to establish the 12-hour RRF on which the sample quantitations are based. The continuing calibration is verified by calculating the RRF and the

percent difference (%D) for each compound. An RRF less than 0.05 or a %D greater than 25% is outside the QC limits for the continuing calibration.

Initial calibration (GC): For single-component pesticides, two separate standard mixes are used, five-point calibrations are analyzed, and calibration factors (CF) are established. The CF for single-component pesticides must be less than or equal to 20%.

The multicomponent pesticide toxaphene and all PCBs (or Aroclors) are analyzed separately. Retention times and CFs are determined for three to five primary peaks. The only review criteria for multicomponent compounds is to verify these steps were taken.

Continuing calibration (GC): To confirm the calibration and evaluate instrument performance for single-component pesticides, calibration verification consisting of instrument blank, performance evaluation mixtures, and the midpoint concentration of the two standard mixes are analyzed. The %D between the calculated amount and the true amount must not exceed 15% on the primary column.

Multicomponent compounds do not require continuing calibration.

# 1.1.5 Matrix Spikes/Matrix Spike Duplicates

The MS, which is used to determine the accuracy of the analysis for a given matrix, consists of a known quantity of stock solution added to the sample before its preparation and analysis. Evaluating the MS data involves two calculations. First, the is calculated by comparing the amount of the compound recovered by the analysis to the amount added to the sample. In addition, the relative percent difference (RPD) between the MS and the MSD samples is calculated and assessed. No specific requirements have been established for qualifying MS/MSD data. However, guidelines to aid in applying professional judgment are discussed in Organic Functional Guidelines.

### 1.1.6 Laboratory Control Samples and Laboratory Duplicates

Some GC methods may require that a laboratory control sample (LCS) and laboratory duplicate analysis be performed with each SDG. The LCS monitors the overall performance of each step during analysis, including sample preparation. All aqueous LCS %R results must fall within the control limits established by the laboratory. Laboratory duplicate samples are used to demonstrate acceptable method precision at the time of analysis. The RPD between the sample and the duplicate sample is calculated. Although no guidelines are established for organic laboratory duplicates, sample qualification is left up to professional judgment.

## 1.1.7 Blank Analysis

Laboratory method blanks are used to assess the existence and magnitude of potential contamination introduced during analysis. Additionally, field blanks may be collected to assess any contamination introduced while collecting samples. When chemicals are found both in samples and laboratory blanks analyzed within the same 12-hour period and/or field-derived blanks, the usability of the data depends on the reviewer's judgment and the blank's origin. According to Organic Functional Guidelines, a sample result should not be considered positive unless the concentration of the compound in the sample exceeds 10 times the amount in any blank for common laboratory contaminants (i.e., methylene chloride, acetone, 2-butanone, and common phthalate esters), or five times the amount for other constituents. These amounts are referred to as action levels (ALs). Because blank samples may not be prepared using the same weight, dilution or volume of sample, these factors also should be considered when using these blank criteria. The specific actions to be taken are as follows:

- If a chemical is found in the blank but not the sample, no action is taken.
- If the sample concentration is less than the quantitation limit and less than the AL, the quantitation limit is reported.

- If the sample concentration is between the quantitation limit and the AL, the concentration is reported as nondetect "U."
- If the sample concentration is greater than the AL, the concentration may be used unqualified.

#### Field-Derived Blanks

For this project, three types of field-derived blanks were collected: the *field blank*, the *equipment rinsate blank* (also called a *rinsate blank*), and the *trip blank*. The field blank is a sample of the source water used onsite, primarily to decontaminate equipment. The equipment rinsate blank is a sample of runoff water from one or more pieces of the decontaminated equipment used to collect samples. The trip blank is a 40-milliliter volatile organic analysis (VOA) vial filled at the laboratory with certifiable water to assess cross-contamination during VOC sample container shipment and handling both before and after the samples are collected.

The frequencies for collecting these QC samples were defined in Section 4 of the NSA Memphis Comprehensive RFI Work Plan (E/A&H, October 1994) as follows:

- Field blanks one per source of water per sampling event.
- Rinsate blank one per week.
- Trip blank one per shipment containing samples for VOAs.

For data validation, each trip blank is associated only with the samples from the same shipment/cooler. The field blanks and the rinsate blanks apply to a larger number of samples because only one is collected per sampling event. Because field-derived blanks are used with method blanks to assess potential cross-contamination of field investigative samples, no action was taken if contamination was detected in the method blanks associated with the field-derived

blanks. Most rinsate and field blanks collected for Assembly C were sent to the onsite laboratory during direct push technology (DPT) work.

#### 1.1.8 Internal Standard Performance

GC/MS internal standards are added to samples to ensure the stability of the instrument's sensitivity and response during each analytical VOC and SVOC run. Internal Standard area counts for samples and blanks must not vary more than a factor of two (-50% to +100%) from the associated calibration standard. If an Internal Standard area count is outside this window, action should be taken.

Listed below are the internal standard compounds recommended by the methods.

| 1 | ZO | C | Compounds |  |
|---|----|---|-----------|--|
|   |    |   |           |  |

SVOC Compounds

Bromochloromethane (BCM)

1,4-Dichlorobenzene-d4 (DCB)

1,4-Difluorobenzene (DFB)

Naphthalene-d8 (NPT)

Chlorobenzene-d5 (CBZ)

Acenaphthene-d10 (ANT)

Phenanthrene-d10 (PHN)

Chrysene-d12 (CRY)

Perylene-d12 (PRY)

# 1.1.9 Field Duplicate Precision

One field duplicate was collected at NSA Memphis for each 10 water and/or soil or sediment samples collected. Field duplicate samples are analyzed to evaluate data precision, which measures the reproducibilty of the analysis.

For the NSA Memphis Resource Conservation and Recovery Act Facility Investigation (RFI), RPDs between the samples and duplicates were calculated during the validation processes for sample results above the PQL. If the results for any compounds did not meet RPD criteria of

10

less than 30% for water and less than 50% (Validata used a control limit of 60%) for soil or sediment, the positive results for that compound were flagged as estimated for the sample and duplicate only. If one value was nondetected and the other value was above the PQL, the positive result was flagged as estimated "J," and the nondetected result as estimated "UJ."

# 1.2 Inorganic Evaluation Criteria

The USEPA methods described in Test Methods for Evaluating Solid Waste, Physical/Chemical Methods and Title 40 Code of Federal Regulations Part 264, Appendix IX define QC criteria that the laboratory must meet, but the methods do not address data evaluation from a user's perspective. Evaluation criteria are available in USEPA Contract Laboratory National Functional Guidelines for Inorganic Data Review (Inorganic Functional Guidelines), February 1994, which was used throughout the data evaluation process when the analytical methods did not address data usability.

Data evaluation for samples collected at NSA Memphis included the following parameters:

- Holding times
- Instrument calibration
- MS results
- Laboratory duplicates
- Blank analysis
- Inductively Coupled Plasma (ICP) interference check samples
- ICP serial dilutions
- LCS results
- Atomic Absorption (AA) duplicate injections and postdigestion spike recoveries
- Field duplicate precision

According to Inorganic Functional Guidelines, when the QC parameters do not fall within the specific method guidelines, the data evaluator annotates or "flags" the corresponding deficient compounds. The data from NSA Memphis were evaluated using this approach. The following flags were used to annotate data exhibiting laboratory and/or field deficiencies or problems:

- U Undetected The analyte was analyzed for but not detected above the instrument detection limit (IDL) or was also found in an associated blank at a concentration less than five times the blank concentration. The IDL is described as the lowest possible concentration an instrument can detect a particular analyte.
- J Estimated Value At least one QC parameter was outside control limits or the analyte's concentration was less than the PQL.
- UJ Undetected and Estimated The analyte was analyzed for but not detected above the listed estimated IDL; the IDL is estimated because at least one QC parameter was outside control limits.

R/UR Unusable Data — One or more QC parameters grossly exceeded control limits.

#### 1.2.1 Holding Times

Acceptable technical holding times are specified in the analytical methods. For aqueous samples, the holding time for metals analysis is six months, except for mercury, which is 28 days from the date of collection. Holding times for soil matrices are not specified in the methods. Therefore, data reviewers may apply the water sample holding times criteria to soil at their discretion.

#### 1.2.2 Instrument Calibration

Initial and continuing calibrations of the instruments with standard solutions are used to check that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes on the Appendix IX list.

An initial calibration is performed to check the performance of the instrument at the beginning of the analytical run and to establish a linear calibration curve. Calibration standard solutions are analyzed periodically to check the instrument performance and confirm that the initial calibration curve is still valid. Calibrations are verified by calculating the %R and comparing the amount of the analyte recovered by analysis to the known amount of standard. The %R for metals, except for mercury, should fall between 90% and 110%. The %R for mercury should fall between 80% and 120%.

#### 1.2.3 Blank Analysis

Laboratory method blanks are used to assess the existence and magnitude of potential contamination introduced during analysis. Additionally, field blanks may be collected to assess the potential contamination introduced during sample collection. When chemicals are found in samples and laboratory blanks, the usability of the data depends on the reviewer's judgment and the blank's origin. According to Inorganic Functional Guidelines, a sample result should not be considered positive unless the concentration of the compound in the sample exceeds five times the amount in any blank, referred to as ALs. Because blank samples may not be prepared using the same weight, dilution or volume of sample, these factors also should be considered when using these blank criteria. The specific actions to be taken are as follows:

- If a chemical is found in the blank but not the sample, no action is taken.
- If the sample concentration is between the IDL, and less than the AL, the concentration is reported as "U."

• If the sample concentration is greater than the AL, the concentration may be used unqualified.

# 1.2.4 ICP Interference Check Samples

The ICP interference check sample is used to confirm the laboratory instrument's inter-element and background correction factors. Interference samples should be run at the beginning and end of each sample analysis run or at least twice per eight-hour working shift. The percent recoveries for the interference check sample should fall between 80% and 120%.

#### 1.2.5 Laboratory Control Samples

LCSs are used to monitor the overall performance of steps in the analysis, including the sample preparation. All aqueous LCS percent recovery results must fall within the control limits of 80% to 120%, except for antimony and silver for which control limits have not been established. Soil LCS standards are generally provided by the USEPA (or state agency or private laboratory). Control limits are established for each soil LCS standard prepared.

#### 1.2.6 MS Analysis

Samples are spiked with known quantities of analytes to evaluate the effect of the sample matrix on digestion and measurement procedures. The %R should be within 75% to 125%. However, when the sample concentration exceeds the spike concentration by a factor of four or more, spike recovery criteria are not applicable.

#### 1.2.7 Laboratory Duplicates

Laboratory duplicate samples are analyzed to evaluate data precision, a measure of the reproducibilty of the analysis. The RPD between the sample and the duplicate sample is calculated. A control limit of 20 RPD for aqueous samples and 35% for soil or sediment samples should not be exceeded for analyte values greater than the quantitation limit or two times the quantitation limit, respectively.

#### 1.2.8 ICP Serial Dilutions

ICP serial dilutions assess the absence or presence of matrix interference. One sample from each set of similar matrix type is chosen for the serial dilution (a five-fold dilution). For an analyte concentration that is at least a factor of 10 times above the instrument detection limit, the measured concentrations of the undiluted sample and of the diluted sample should agree within 10%.

#### 1.2.9 AA Duplicate Injections and Postdigestion Spike Recoveries

During AA analysis, duplicate injections and postdigestion spikes are used to assess precision and accuracy of the laboratory analysis. The %RSD of duplicate injections must agree within 20%. Percent recovery of the postdigestion spike sample should fall between 85% and 115%.

# 1.2.10 Field Duplicate Precision

One field duplicate was collected for each 10 water and/or soil samples collected. Field duplicate samples are analyzed to evaluate data precision, which is a measure of the reproducibilty of the analysis.

For the NSA Memphis RFI, RPDs between the samples and duplicates were calculated during the validation processes for sample results above the PQL. If the results for any compounds did not meet RPD criteria of less than 30% for water and less than 50% (Validata used a control limit of 60%) for soil or sediment, the positive results for that compound were flagged as estimated for the sample and duplicate only. If one value was nondetected and the other value was above the PQL, the positive result was flagged as estimated "J," and the nondetected result as estimated "UJ."

#### 2.0 DATA VALIDATION RESULTS — SWMU 26

All samples were received by the laboratory intact and with the proper documentation. Table 2-1 summarizes the samples that were included in SWMU 26.

Table 2-1 SWMU 26 Sample IDs

| Sample IDs  | SVOCs | Pest/PCBs | Appendix IX<br>Metals | Arsenic, Cadmium,<br>Lead, Mercury, &                                                                                                                                                                                           |  |
|-------------|-------|-----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 026S000104  |       |           | 1<br>1<br>1           | X                                                                                                                                                                                                                               |  |
| 0268000108  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026\$000118 |       |           |                       |                                                                                                                                                                                                                                 |  |
| 026S000204  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000208  |       |           |                       | <b>X</b>                                                                                                                                                                                                                        |  |
| 026S000218  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000304  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000308  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000318  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000404  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000408  |       |           |                       | $\mathbf{x}$                                                                                                                                                                                                                    |  |
| 026S000415  |       |           |                       | X                                                                                                                                                                                                                               |  |
| 026S000501  | X     | X         | X                     | n de de la companya de la companya<br>La companya de la co |  |

Thirteen investigative samples were analyzed in two SDGs for SWMU 26. Full validation reports of each SDG and data tables can be found in Attachment A.

# 2.1 Data Quality

The overall data quality of the analytical work performed for NSA Memphis at SWMU 26 was considered satisfactory and usable for site remediation and risk assessment. Results that were outside QA/QC requirements were flagged as estimated "J," indicating that the data could be biased either high or low. Although the data are qualified as estimated, they remain dependable for use in risk assessment and site remediation.

#### 2.2 Blanks

Arsenic, barium, cadmium, copper, lead, and zinc were detected in several method blanks. The blanks were examined during the validation process and sample results for arsenic, barium, cadmium, copper, lead, and zinc believed to be from blank contamination were nullified.

# 2.3 Unusable Data

One element in one sample was rendered unusable because it grossly exceeded a QC parameter. Table 2-2 summarizes the unusable data and explains the qualification.

Table 2-2 SWMU 26 Unusable Data

| Sample ID  | Fraction | Analyte(s) | Reason              |
|------------|----------|------------|---------------------|
| 026S000501 | Metals   | Antimony   | MS percent recovery |

#### 3.0 DATA VALIDATION RESULTS — SWMU 27

All samples were received by the laboratory intact and with the proper documentation. Table 3-1 summarizes the samples that were included in SWMU 27.

Table 3-1 SWMU 27 Sample IDs

| Sample IDs | VOC | SVOC | Pest/PCB | APP IX Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|-----|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0278000101 |     | x    | <b>x</b> | A Color of the Col |
| 027S000105 |     |      |          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0278000114 |     |      |          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 027S000201 |     | X    | X        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0278000206 |     |      |          | $\mathbf{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 027S000212 |     |      |          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0278000301 |     |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 3-1 SWMU 27 Sample IDs

| Sample IDs  | VOC | SVOC | Pest/PCB | APP IX Metals |
|-------------|-----|------|----------|---------------|
| 027S000306  |     |      |          | <b>X</b>      |
| 027S000312  |     |      |          | X             |
| 0278000401  |     |      |          | <b>x</b>      |
| 027S000406  |     |      |          | X             |
| 027S000412  |     |      |          | <b>X</b>      |
| 027S000501  |     | X    | X        | X             |
| 027S000506  |     |      |          | $\mathbf{x}$  |
| 027S000512  |     |      |          | X             |
| 027C000512  | X   |      |          | X             |
| 027H000545  | X   |      |          |               |
| 0278000601  |     |      |          | X             |
| 027S000606  |     |      |          | X             |
| 027\$000612 |     |      |          | X             |
| 027S000701  |     |      |          | X             |
| 027S000706  |     |      |          | X             |
| 027S000712  |     |      |          | X             |
| 027S000801  |     |      |          | X             |
| 027\$000806 |     |      |          | <b>X</b>      |
| 027C000806  | X   |      |          | X             |
| 027S000812  |     |      |          | X             |
| 027C000812  | X   |      |          | X             |
| 027S000901  |     |      |          | X             |
| 0278000906  |     |      |          | X             |
| 027S000912  |     |      |          | X             |
| 027H000944  | X   |      |          |               |

Thirty-two investigative samples were analyzed in four SDGs for SWMU 27. Full validation reports of each SDG and data tables can be found in Attachment A of this document.

## 3.1 Data Quality

The overall data quality of the analytical work performed for NSA Memphis at SWMU 27 was considered satisfactory and usable for site remediation and risk assessment. Results that were outside QA/QC requirements were flagged as estimated "J," indicating that the data could be biased either high or low.

#### 3.2 Unusable Data

Three elements in 21 samples were rendered unusable because they grossly exceeded QC parameters. Table 3-2 summarizes the unusable data and explains the qualification.

Table 3-2 SWMU 27 Unusable Data

| Sample ID             | Fraction | Analyte(s) | Reason              |
|-----------------------|----------|------------|---------------------|
| 027S000301 027S000306 | Metals   | Silver     | MS percent recovery |
| 027S000312 027S000406 |          | Selenium   |                     |
| 027S000412 027S000506 |          |            |                     |
| 027S000512 027C000512 |          |            |                     |
| 027S000601 027S000606 |          |            |                     |
| 027S000612 027S000706 |          |            |                     |
| 027S000712 027S000801 | Metals   | Silver     | MS percent recovery |
| 027S000806 027C000806 |          | Selenium   |                     |
| 027S000401 027S000501 | Metals   | Selenium   | MS percent recovery |
| 0278000701            |          |            |                     |
|                       |          |            |                     |
| 027S000114 027S000212 | Metals   | Antimony   | MS percent recovery |

#### 3.3 Blanks

Methylene chloride, arsenic, selenium, antimony, silver, cobalt, copper, cadmium, chromium, thallium, tin, and zinc were detected in several method and field blanks. The blanks were

examined during the validation process and sample results for methylene chloride, arsenic, selenium, antimony, silver, cobalt, copper, cadmium, chromium, thallium, tin, and zinc believed to be from blank contamination were nullified.

#### 4.0 DATA VALIDATION RESULTS — SWMU 62

All samples were received by the laboratory intact and with the proper documentation. Table 4-1 summarizes the samples that were included in SWMU 62.

Table 4-1 SWMU 62 Sample IDs

| Sample IDs | SVOCs | Pest/PCBs | Appendix IX Metals | VOC      |  |
|------------|-------|-----------|--------------------|----------|--|
| 062C002020 |       |           |                    | <b>X</b> |  |
| 062C005020 |       |           |                    | X        |  |
| 062H005041 |       |           |                    |          |  |
| 062C006020 |       |           |                    | X        |  |
| 0628000701 | X     | X         | x                  |          |  |
| 062S000801 | X     | X         | X                  |          |  |
| 062S000901 | X     | X         | X                  |          |  |

Seven investigative samples were analyzed in two SDGs for SWMU 62. Full validation reports of each SDG and data tables can be found in Attachment A.

# 4.1 Data Quality

The overall data quality of the analytical work performed for NSA Memphis at SWMU 62 was considered satisfactory and usable for site remediation and risk assessment. Results that were outside QA/QC requirements were flagged as estimated "J," indicating that the data could be

biased either high or low. Although the data are qualified as estimated, they remain dependable for use in risk assessment and site remediation.

# 4.2 Blanks

Acetone and methylene chloride were detected in several method blanks. The blanks were examined during the validation process and sample results for acetone and methylene chloride believed to be from blank contamination were nullified.

# Attachment A Data Validation Summary Narratives and Data Tables

# **SWMU 26**

# DATA QUALIFICATION SUMMARY

NET, Inc. - 1439 Inorganics

SAMPLES:

 $026S000104,\ 026S000104MS,\ 026S000104MD,\ 026S000108,\ 026S000118,\ 026S000204,$ 

026S000208, 026S000218, 026S000304, 026S000308, 026S000318, 026S000404,

026S000408, 026S000415

#### TOTAL METALS

I.) Holding Times:

All Holding Time criteria were met. No action was required.

II.) Calibration:

All Calibration criteria were met. No action was required.

III.) Blanks:

The following blank result represents the highest detection associated with the samples and was used for data qualification:

| Blank    |                |            | Action Level |
|----------|----------------|------------|--------------|
| Type/ID# | <b>Analyte</b> | Max. Conc. | mg/kg        |
| CCB2     | arsenic        | 3.80 ug/L  | 3.80         |

CCB = Continuing Calibration Blank

All results greater than the IDL but less than 5X the blank amount (Action Level, mg/kg for soil samples) for which the contaminated blank was an associated calibration blank were flagged as undetected (U).

The following analytes had negative results with absolute values greater than the IDL's:

| <u>Blank</u> |                |            |                  |
|--------------|----------------|------------|------------------|
| Type/ID#     | <u>Analyte</u> | Neg. Conc. | 5X Conc. (mg/kg) |
| CCB4         | cadmium        | -4.30 ug/L | 4.30             |
| CCB2         | zinc           | -6.20 ug/L | 6.20             |

CCB = Continuing Calibration Blank

All associated positive sample results less than 5X the absolute value of the negative blank results were flagged as estimated (UJ).

# IV.) ICP Interference Check Sample Results:

All Interference Check Sample criteria were met. No action was required.

# V.) ICP Serial Dilution Analysis:

All Serial Dilution criteria were met, so no action was necessary.

# VI.) Laboratory Control Samples (LCS):

All Laboratory Control Sample criteria were met. No action was required.

# VII.) Duplicate Sample Analysis:

The Relative Percent Difference (RPD) of nickel (54.9%) exceeded the 35% QC limits for soil duplicate sample 026S000104MD. The results for this analyte in the samples of this SDG, which consisted entirely of positive detections, were flagged as estimated (J).

### VIII.) Matrix Spike Recoveries:

The Percent Recovery (%R) of arsenic (70.4%) was below the 75-125% QC limit for sample 026S000104MS. The positive and non-detect results for this analyte in the samples of this SDG were flagged as estimated (J) and (UJ).

# IX.) Field Duplicates:

There were no field duplicate samples associated with this SDG. No action was required.

#### X.) Furnace Atomic Absorption QC:

Method of Standard Additions (MSA):

The MSA coefficient of correlation was less than 0.995 for arsenic in the following samples:

| Client     | Coeffecient of |
|------------|----------------|
| Sample #:  | Correlation:   |
| 026S000104 | 0.968          |
| 026S000204 | 0.986          |
| 026S000208 | 0.949          |
| 026S000304 | 0.935          |
| 026S000308 | 0.944          |
|            |                |

All positive and non-detect results for arsenic in these samples were previously flagged as estimated (J) and (UJ) based on blank contamination or low matrix spike recoveries. No further action was necessary.

#### Post Digestion Spike Recoveries:

All Post Digestion Spike Recovery criteria were met. No action was required.

XI.) Sample Result, Calculation/Transcription Verification:

All criteria were met, so no action was taken.

XII.) Quarterly Verification of Instrumental Parameters:

All criteria met, so no action was taken.

XIII.) Overall Assessment of Data/General:

All laboratory data were acceptable with qualification.

#### E/A&H VALIDATION SUMMARY REPORT

Site Name:

NSA Memphis, Millington, Tennessee

CTO and Subtask No.:

0094-04730 NET, Bedford

Laboratory: Sample Delivery Group:

1719

Matrix:

Soil

#### SDG 1719 Sample ID and Analyses

| Sample ID  | Sample ID Appendix 9 Metals |   | Pest/PCBs |
|------------|-----------------------------|---|-----------|
| 026S000501 | Х                           | x | X         |

#### VALIDATION RESULTS

All samples were received by the laboratory intact and with the proper documentation on March 7, 1996, for metals, SVOCs, and pest/PCBs. The following sections summarize the data validation results.

# Appendix IX Metals Fraction

- All holding times, initial calibration verifications, continuing calibration verifications, ICP interference check sample recoveries, LCSs, ICP serial dilution differences, and graphite furnace atomic absorption (GFAA) analytical spike results were acceptable. No problems were encountered during review of sample result verification.
- 2. The following elements were detected in the various blanks analyzed with this SDG.

#### **Blank Detections and Associated Samples**

| Blank ID          | Element                            | Conc.                                          | Action Level                                       | Associated<br>Samples |
|-------------------|------------------------------------|------------------------------------------------|----------------------------------------------------|-----------------------|
| ССВІ              | Chromium<br>Vanadium<br>Tin        | 5.0 μg/L<br>4.1 μg/L<br>49.6 μg/L              | 5.0 mg/kg<br>4.1 mg/kg<br>49.6 mg/kg               | 0268000501            |
| CCB2              | Cadmium<br>Vanadium<br>Zinc<br>Tin | 3.6 μg/L<br>-7.2 μg/L<br>8.7 μg/L<br>62.7 μg/L | 3.6 mg/kg<br>14.4 mg/kg<br>8.7 mg/kg<br>62.7 mg/kg | 026S000501            |
| CCB3<br>(2nd run) | Selenium                           | 2.5 μg/L                                       | 2.5 mg/kg                                          | 0268000501            |
| CCB4<br>(2nd run) | Selenium                           | 1.9 μg/L                                       | 1.9 mg/kg                                          | 026S000501            |

#### **Blank Detections and Associated Samples**

| Blank ID     | Element                                          | Conc.                                                                                                     | Action Level                                                                                   | Associated<br>Samples |
|--------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|
| Method Blank | Barium Chromium Copper Lead Silver Vanadium Zinc | 0.584 mg/kg<br>-1.694 mg/kg<br>1.280 mg/kg<br>0.570 mg/kg<br>-0.826 mg/kg<br>-2.030 mg/kg<br>-1.262 mg/kg | 2.92 mg/kg<br>16.94 mg/kg<br>6.4 mg/kg<br>2.85 mg/kg<br>8.26 mg/kg<br>20.3 mg/kg<br>12.6 mg/kg | 026S000501            |

Note:  $\mu g/L = \text{micrograms per liter}$  mg/kg = milligrams per kilogram When the blank concentration was greater than the PQL, the AL was five times the blank concentration. Positive results less than the AL were qualified as nondetect (U); nondetect results were accepted without qualification.

When the blank concentration was less than the PQL (negative result), the AL was 10 times the absolute value of the concentration. Positive results less than the AL were qualified as estimated (J) and nondetect results were qualified as estimated (UJ).

3. The following elements exceeded the 75% to 125% control limits for the MS.

#### Matrix Spike Deficiencies

| Element  | %R   | Associated Samples                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------------------------------|
| Antimony | 0.0  | https://www.commonstate.com/commonstate/commonstate/commonstate/commonstate/commonstate/commonstate/commonstate |
| Cadmium  | 71.6 | 026S000501                                                                                                      |

All antimony results were qualified as estimated (J) for positive results and unusable (UR) for undetected results. All cadmium results were qualified as estimated for positive results (J) and undetected results (UJ).

5. The RPDs for chromium (38.6) and copper (61.8) exceeded the 20% maximum control limits for laboratory duplicates. All positive results were qualified as estimated (J) while nondetect results were accepted without qualification.

#### **SVOC Fraction**

 All holding times, GC/MS instrument performance checks, initial calibrations, continuing calibrations, surrogates recoveries, internal standard performance, and blank results were acceptable. No problems were encountered during review of sample result verification.

# Pesticide/PCB Fraction

- 1. All holding times, surrogate recoveries, blank spike/blank spike duplicate recoveries, blanks, and initial calibrations were acceptable. No problems were encountered during review of sample result verification.
- 2. The following compounds exceeded the 25% maximum control limits for the continuing calibration check:

# **Continuing Calibration Check Deficiencies**

| Compound     | % Difference | Column | Associated Samples |
|--------------|--------------|--------|--------------------|
| 4,4'-DDE     | 40.1         | RXT15  | 0268000501         |
| Aroclor-1260 | 27.3         | RXT15  | 026S000501         |

All results were less than the PQL and therefore were qualified as estimated (UJ).

| DATALCP3 |
|----------|
| 05/20/96 |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26

Page: 1

| 05/20/96                                |                                                                                    | NAS                                                      | NAS MEMPHIS, RFI, ASSEMBLY C Time: 15:2<br>SWMU 26 |  |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| APK9-HETAL                              | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 02698B0501<br>143764\$<br>02688B0501<br>03/06/96<br>Soil |                                                    |  |  |  |  |  |
| CAS # Perameter                         |                                                                                    | 1719 VAL                                                 |                                                    |  |  |  |  |  |
| SB Antimony<br>AS Arsenic<br>BA Barium  |                                                                                    | 7.3 UR<br>5.7<br>82.8                                    |                                                    |  |  |  |  |  |
| BE Beryllium<br>CD Cadmium              |                                                                                    | 0.53 J<br>1.2 UJ                                         |                                                    |  |  |  |  |  |
| CR Chromium<br>CO Cobalt<br>CU Copper   |                                                                                    | 15.2 J<br>8.5 J<br>15.6 U                                |                                                    |  |  |  |  |  |
| PB Lead<br>HG Mercury<br>NI Nickel      |                                                                                    | 19.5<br>0.12 U<br>21.8                                   |                                                    |  |  |  |  |  |
| SE Selenium<br>AG Silver<br>TL Thallium |                                                                                    | 0,34 U<br>1.6 J<br>0.49 U                                |                                                    |  |  |  |  |  |
| V Vanadium<br>ZN Zinc<br>SN Tin         |                                                                                    | 25.<br>65.1<br>28.3 U                                    |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |
|                                         |                                                                                    | ·                                                        |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |
|                                         |                                                                                    |                                                          |                                                    |  |  |  |  |  |

# NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26

Page:

Time: 15:23

| RCRA PETAL                                                 | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 0268000104<br>4-1245908<br>0268000104<br>06/05/95<br>Soil | •      | 02650<br>4-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 591\$<br>00108<br>/95                      | 3      | 026-S-<br>026S00<br>4-1245<br>026S00<br>06/05/<br>Soil<br>MG/KG | 92\$<br>0118                             | 1   | 026-S-000<br>026S00020<br>4-124593S<br>026S00020<br>06/05/95<br>Soil<br>MG/KG | 4                  | 026-5-1<br>0268001<br>4-1245<br>0268001<br>06/05/<br>Soil<br>MG/KG | 94\$<br>0208                                     | 026-s-0<br>0268000<br>4-12459<br>0268000<br>06/05/9<br>Soil<br>MG/KG | 1218<br>155<br>1218                        |     |
|------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|-----------------------------------------------------------------|------------------------------------------|-----|-------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|-----|
| CAS # Parameter                                            |                                                                                    | 1439                                                      | YAL    | 1439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | VAL    | 1439                                                            |                                          | VAL | 1439                                                                          | VAL                | 1439                                                               | VAL                                              | 1439                                                                 |                                            | VAL |
| AS Arsenic CD Cadmium PB Lead HG Mercury NI Nickel ZN Zinc |                                                                                    | 3.6<br>0.75<br>6.3<br>0.13<br>11.8<br>29.2                | n<br>n |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1<br>0.76<br>7.6<br>0.12<br>15.9<br>32.3 | n<br>n |                                                                 | 2.<br>0.73<br>5.<br>0.12<br>13.5<br>17.7 |     | 7.                                                                            | 79 UJ<br>8<br>13 U |                                                                    | 3.8 J<br>1. J<br>6.1<br>0.12 U<br>16.8 J<br>31.6 |                                                                      | 2.9<br>0.72<br>5.8<br>0.12<br>14.5<br>15.1 |     |
|                                                            |                                                                                    |                                                           |        | The state of the s |                                            |        |                                                                 |                                          |     |                                                                               |                    |                                                                    |                                                  |                                                                      |                                            |     |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26

Page: 3 Time: 15:23

|                                                            | SWMU 26                                                                            |                                                      |                                                                                          |                                                                                          |                                                                                     |                                                                                          |                                                                                     |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| RCRA PETAL                                                 | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 026\$000304<br>4-124596\$<br>026\$000304<br>06/05/95 | 026-\$-0003-08<br>026\$000308<br>4-124597\$<br>026\$000308<br>06/05/95<br>\$011<br>MG/KG | 026-\$-0003-18<br>026\$000318<br>4-124598\$<br>026\$000318<br>06/05/95<br>\$oil<br>MG/KG | 026-S-0004-04<br>026S000404<br>4-124599S<br>026S000404<br>06/05/95<br>Soil<br>MG/KG | 026-\$-0004-08<br>026\$000408<br>4-124600\$<br>026\$000408<br>06/05/95<br>\$oil<br>HG/KG | 026-s-0004-15<br>026s000415<br>4-124601s<br>026s000415<br>06/05/95<br>soil<br>MG/KG |  |  |
| CAS # Parameter                                            |                                                                                    | 1439 VAL                                             | 1439 VAL                                                                                 | 1439 VAL                                                                                 | 1439 VAL                                                                            | 1439 VAL                                                                                 | 1439 VAL                                                                            |  |  |
| AS Arsenic CD Cadmium PB Lead HG Hercury NI Nickel ZN Zinc |                                                                                    | 6.6 J<br>0.97 J<br>5.9<br>0.12 U<br>18.5 J<br>34.7   | 0.49 UJ<br>0.96 J<br>7.4<br>0.12 U<br>15.8 J<br>29.                                      | 1.1 UJ<br>0.77 J<br>7.1<br>0.12 U<br>11.1 J<br>18.                                       | 3.9 J<br>0.78 J<br>0.49 U<br>0.12 U<br>19.9 J<br>30.1                               | 7.3 J<br>1.2 J<br>5.2<br>0.12 U<br>16.4 J<br>23.8                                        | 1.7 UJ<br>0.68 UJ<br>6.5<br>0.12 U<br>11.4 J<br>21.                                 |  |  |
|                                                            |                                                                                    |                                                      |                                                                                          |                                                                                          |                                                                                     |                                                                                          |                                                                                     |  |  |

## NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26

Page: 4 Time: 15:23

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     | SWMU 2 | 26 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--|--|
| SUBA6-PEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 026\$\$B0501<br>143764<br>026\$\$B0501<br>03/06/96<br>03/11/96<br>03/15/96<br>\$oil                                                                                                                                                                                                                                                 |        |    |  |  |
| CAS # Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | srameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1719 VAL                                                                                                                                                                                                                                                                                                                            |        |    |  |  |
| 319-84-6 at 319-85-7 be 319-86-8 de 72-54-8 4, 72-55-9 4, 50-57-1 Di 959-98-8 Er 73213-65-9 Er 7421-93-4 Er 76-44-8 1024-57-3 He 72-43-5 Me 8001-35-2 To 1104-28-2 Ar 11141-16-5 Ar 153469-21-9 Ar 11096-82-5 Ar 153494-70-5 Er 5103-71-9 at 5103-74-2 ge 51 | amma-BHC (Lindane)  Lpha-BHC  elta-BHC  elta-BHC  elta-BHC  4'-DDD  4'-DDE  4'-DDT  ieldrin  ndosulfan II  ndosulfan sulfate  ndrin aldehyde  eptachlor  e | 2. U 2. U 2. U 2. U 2. U 2. U 4.1 U 41. U |        |    |  |  |

# NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26

Page: 5 Time: 15:23

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                                                                                                          | SWMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| SUB46-SVOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | 026-s-0005-01<br>026ss80501<br>143764<br>026ssb0501<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| CAS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parameter                                                                                          | 1719 VAL                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| 108-95-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenol                                                                                             | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bis(2-Chloroethyl)ether                                                                            | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Chlorophenol                                                                                     | 430. U                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | • ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                       |
| 555555000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-Dichlorobenzene                                                                                | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,4-Dichlorobenzene                                                                                | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichtorobenzene                                                                                | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Methylphenol (o-Cresol)                                                                          | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,21-oxybis(1-Chloropropane)                                                                       | 430. U                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Methylphenol (p-Cresol)                                                                          | <b>430.</b> U                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-Nitroso-di-n-propylamine                                                                         | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexach Loroethane                                                                                  | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| augustron areasonadautoroaksa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ni trobenzene                                                                                      | 430. U                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Isophorone                                                                                         | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Nitrophenol                                                                                      | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dimethylphenol                                                                                 | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4-Dichlorophenol                                                                                 | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,4-Trichlorobenzene                                                                             | 430. U                                                                                                   | I and a second control to the second in the |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Naphthal ene                                                                                       | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Chloroaniline                                                                                    | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| 87-68-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexach Lorobutadiene                                                                               | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| 111-91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bis(2-Chloroethoxy)methane                                                                         | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l  | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Chloro-3-methylphenol                                                                            | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| 91-57-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Methylnaphthalene                                                                                | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95000000000000000000000000000000000000                                                                        |                                                       |
| 77-47-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexachlorocyclopentadiene                                                                          | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| 88-06-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4,6-Trichlorophenol                                                                              | 430. U                                                                                                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | \$1000000000                                          |
| 95-95-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4,5-Trichlorophenol                                                                              | 1100. U                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Chloronaphthalene                                                                                | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ANGO ANGO                                                                                                   |                                                       |
| 88-74-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Nitroaniline                                                                                     | 1100. U                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
| 131-11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dimethyl phthalate                                                                                 | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acenaphthylene                                                                                     | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,6-Dinitrotoluene                                                                                 | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q 4660 (1090 600 600 000 11.11 / 11.00 000 000 000 000 000 000 000 000 0                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-Nitroaniline                                                                                     | 1100. U                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acenaph thene                                                                                      | 430. U                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dinitrophenol                                                                                  | 1100. U                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Nitrophenol                                                                                      | 1100. U                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | a conservation of the cons | 50000000000000000000000000000000000000                                                                        | d ocupus tayun jur juran dagamas ocup vurka kataka sa |
| NE NAME ANNA PARAMETERS OF THE STATE OF THE | Dibenzofuran                                                                                       | 430. U                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                       |

# NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 26

Page: 6 Time: 15:23

| SUB46-SVOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE AMALYZED> MATRIX> UNITS>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 026-S-0005-01<br>026SSB0501<br>143764<br>026ssb0501<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CAS # Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1719 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 121-14-2 2,4-Dinitrotolu 84-66-2 Diethylphthalat 7005-72-3 4-Chlorophenylp 86-73-7 Fluorene 100-01-6 4-Nitrosodipher 101-55-3 4-Bromophenylp 118-74-1 Hexachloropher 85-01-8 Pentachloropher 85-01-8 Pentachloropher 85-01-8 Pentachloropher 85-01-8 Pentachloropher 85-01-8 Pintoropher 85-01-8 Pentachloropher 85-01-8 Pentachloropher 85-01-8 Pentachloropher 85-01-8 Pentachloropher 85-74-8 Carbazole 84-74-2 Di-n-butylphtha 129-00-0 Pyrene 85-68-7 Butylbenzylphth 91-94-1 3,31-Dichlorobe 56-55-3 Benzo(a)anthrac 117-81-7 Di-n-octyl phth 205-99-2 Benzo(b)fluorer 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cc 53-70-3 Dibenz(a,h)anth 191-24-2 Benzo(g,h,1)per | chenylether chenylether chenylether chenylether chenylether chene chenylether chene chenylether chene chenylether chene chenylether chene | 430. U 430. U 430. U 430. U 1100. U 1100. U 1100. U 430. U 430. U 1100. U 120. J 430. U 510. J 61. J |  |  |  |

# **SWMU 27**

# DATA QUALIFICATION SUMMARY

NET, Inc. - 1441 Inorganics

SAMPLES: 027S000101, 027S000101MS, 027S000101MD, 027S000105, 027S000114, 027S000201,

027S000206, 027S000212

#### TOTAL METALS

## I.) Holding Times:

All Holding Time criteria were met. No action was required.

#### II.) Calibration:

All Calibration criteria were met. No action was required.

#### III.) Blanks:

The following blank results represent the highest detections associated with the samples and were used for data qualification:

| Blank    |                |            | Action Level |
|----------|----------------|------------|--------------|
| Type/ID# | <u>Analyte</u> | Max. Conc. | mg/kg        |
| PBS2     | antimony       | 11.3 ug/L  | 11.3         |
| CCB2     | cobalt         | 4.70 ug/L  | 4.70         |
| CCB2     | copper         | 5.10 ug/L  | 5.10         |
| CCB3     | silver         | 4.30 ug/L  | 4.30         |

CCB = Continuing Calibration Blank, PBS = Preparation Blank (Soil)

All results greater than the IDL but less than 5X the blank amount (Action Level, mg/kg for soil samples) for which the contaminated blank was an associated calibration or preparation blank were flagged as undetected (U).

The following analytes had negative results with absolute values greater than the IDL's:

| Blank    |                |            |                  |
|----------|----------------|------------|------------------|
| Type/ID# | <u>Analyte</u> | Neg. Conc. | 5X Conc. (mg/kg) |
| PBS1     | cadmium        | -0.82 ug/L | 0.82             |
| CCB2     | thallium       | -3.60 ug/L | 3.60             |
| CCB2     | zinc           | -6.90 ug/L | 6.90             |

# CCB = Continuing Calibration Blank, PBS = Preparation Blank (Soil)

All associated positive sample results less than 5X the absolute value of the negative blank result were flagged as estimated (J) and all non-detects were flagged as estimated (UJ).

### IV.) ICP Interference Check Sample Results:

All Interference Check Sample criteria were met. No action was required.

### V.) ICP Serial Dilution Analysis:

All Serial Dilution criteria were met, so no action was necessary.

### VI.) Laboratory Control Samples (LCS):

All Laboratory Control Sample criteria were met. No action was required.

# VII.) Duplicate Sample Analysis:

All Duplicate Sample criteria were met. No action was necessary.

#### VIII.) Matrix Spike Recoveries:

The Percent Recoveries (%R's) of the following analytes were below the 75-125% QC limits for spiked sample 027S000101MS:

| Analyte   | <u>%</u> R |
|-----------|------------|
| antimony  | 8.70%      |
| arsenic   | 61.3%      |
| barium    | 61.5%      |
| beryllium | 64.1%      |
| cadmium   | 61.5%      |
| chromium  | 66.2%      |
| cobalt    | 67.1%      |
| copper    | 66.4%      |
| nickel    | 68.5%      |
| silver    | 65.0%      |
| vanadium  | 39.3%      |
| tin       | 68.2%      |
|           |            |

All non-detect results for antimony in the samples of this SDG were rejected (R) since the %R for this analyte was less than 30%. All positive results for antimony were flagged as estimated (J). All positive and non-detect results for the other analytes in the samples of this SDG were flagged as estimated (J) and (UJ).

# IX.) Field Duplicates:

There were no field duplicate samples associated with this SDG. No action was required.

# X.) Furnace Atomic Absorption QC:

Method of Standard Additions (MSA):

The MSA coefficient of correlation for arsenic in sample 027S000206 was 0.987, which was less than 0.995. The positive result for arsenic in this sample was previously flagged as estimated (J). No further action was necessary.

Post Digestion Spike Recoveries:

All Post Digestion Spike Recovery criteria were met. No action was required.

XI.) Sample Result, Calculation/Transcription Verification:

All criteria were met, so no action was taken.

XII.) Quarterly Verification of Instrumental Parameters:

All criteria met, so no action was taken.

XIII.) Overall Assessment of Data/General:

The non-detect results for antimony were rejected in two samples due to matrix spike recoveries of less than 30%. All remaining laboratory data were acceptable with qualification.

#### DATA QUALIFICATION SUMMARY

NET, Inc. - 1447 Organics and Inorganics

SAMPLES: 027C000812, 027S000812, 027S000812MS, 027S000812MD, 027S000901, 027S000906,

027S000912, 027H000944, TRIP BLANK

#### **VOLATILE ORGANICS**

I.) Holding Times:

All Holding Time criteria were met. No action was required.

II.) GC/MS Tuning:

All GC/MS Tuning criteria were met. No action was necessary.

III.) Calibration:

Initial Calibration:

The Percent Relative Standard Deviation (%RSD) for acetone (39.0%) exceeded the 30% QC limit for the standards run on 6/07/95 on instrument HO5970L. There was no positive result for this compound in the associated sample, so no action was necessary.

#### Continuing Calibration:

The Percent Difference (%D) of methylene chloride (26.7%) exceeded the 25% QC limit for the continuing calibration run on 6/13/95 at 10:43 on instrument HP5970K. The non-detect result for this compound in associated sample 027H000944 was flagged as estimated (UJ).

The Percent Differences (%D's) of methylene chloride (26.6%) and carbon tetrachloride (26.1%) exceeded the 25% QC limit for the continuing calibration run on 6/14/95 at 10:16 on instrument HP5970K. The associated sample for this calibration was the trip blank. No action was required.

The Percent Difference (%D) of 1,2-dichloroethene (46.0%) exceeded the 25% QC limit for the continuing calibration run on 6/12/95 at 10:48 on instrument HP5970L. The non-detect result for this compound in associated sample 027C000812 was flagged as estimated (UJ).

#### IV.) Blanks:

Method Blanks:

Methylene chloride was detected at 2.0 ug/L in water method blank VBLK061395K. The positive result for this compound in associated sample 027H000944, which was less than 10X the blank amount, was flagged as undetected (U) with the laboratory result being replaced by the CRQL.

Methylene chloride was detected at 1.0 ug/L in water blank VBLK061495K. The associated sample for this blank was a trip blank. No action was required.

Trip Blank:

Methylene chloride was detected at 4.0 ug/L in the trip blank associated with this SDG. The positive result for this compound in associated sample 027C000812, which was less than 10X the blank amount, was flagged as undetected with the detection limit replacing the analytical result. The result for this compound in the other associated sample (027H000944) was previously flagged based on the associated method blank. No further action was necessary.

TIC's:

There were no TIC's reported in the method blanks or trip blank for this SDG.

V.) Surrogate Recoveries:

All Surrogate Recovery criteria were met. No action was required.

VI.) Matrix Spike / Matrix Spike Duplicate (MS / MSD):

No MS / MSD analysis was requested for this fraction of this SDG. No action was required.

VII.) Field Duplicates:

The field duplicate samples for samples 027C000812 and 027H000944 were not analyzed in this SDG. No action was required.

VIII.) Internal Standards Performance:

All Internal Standards Performance criteria were met. No action was required.

IX) TCL Compound Identification:

All TCL criteria were met, so no action was necessary.

X) Compound Quantitation and Reported Contract Required Quantitation Limits (CRQL's):

All CRQL criteria were met. No action was required.

XI.) Tentatively Identified Compounds (TIC's):

All TIC criteria were met, so no action was taken.

XII.) System Performance:

All criteria were met, so no action was necessary.

XIII.) Overall Assessment of Data/General:

All laboratory data were acceptable with qualification.

#### TOTAL METALS

#### I.) Holding Times:

All Holding Time criteria were met. No action was required.

II.) Calibration:

All Calibration criteria were met. No action was required.

#### III.) Blanks:

The following blank results represent the highest detections associated with the samples and were used for data qualification:

| <u>Blank</u> |                | •          | Action Level |
|--------------|----------------|------------|--------------|
| Type/ID#     | <b>Analyte</b> | Max. Conc. | mg/kg        |
| CCB3         | zinc           | 12.8 ug/L  | 12.8         |
| CCB3         | tin            | 23.1 ug/L  | 23.1         |

CCB = Continuing Calibration Blank

All results greater than the IDL but less than 5X the blank amount (Action Level, mg/kg for soil samples) for which the contaminated blank was an associated calibration blank were flagged as undetected (U).

The following analytes had negative results with absolute values greater than the IDL's:

| <u>Blank</u> |                |            |                  |
|--------------|----------------|------------|------------------|
| Type/ID#     | <u>Analyte</u> | Neg. Conc. | 5X Conc. (mg/kg) |
| CCB2         | cadmium        | -4.20 ug/L | 4.20             |
| CCB2         | chromium       | -6.80 ug/L | 6.80             |
| CCB7         | thallium       | -3.20 ug/L | 3.20             |

CCB = Continuing Calibration Blank

All associated positive sample results less than 5X the absolute value of the negative blank result were flagged as estimated (J) and all non-detects were flagged as estimated (UJ).

### IV.) ICP Interference Check Sample Results:

All Interference Check Sample criteria were met. No action was required.

#### V.) ICP Serial Dilution Analysis:

All Serial Dilution criteria were met, so no action was necessary.

# VI.) Laboratory Control Samples (LCS):

All Laboratory Control Sample criteria were met. No action was required.

#### VII.) Duplicate Sample Analysis:

All Duplicate Sample criteria were met. No action was necessary.

#### VIII.) Matrix Spike Recoveries:

The Percent Recoveries (%R's) of the following analytes were below the 75-125% QC limits for spiked sample 027S000812MS:

| <u>Analyte</u> | %R.   |
|----------------|-------|
| antimony       | 42.5% |
| selenium       | 61.7% |
| thallium       | 71.6% |

All positive and non-detect results for these analytes in the samples of this SDG were flagged as estimated (J) and (UJ).

# IX.) Field Duplicates:

The calculable Relative Percent Differences (RPD's) of analytes in field duplicate samples 027S000812 and 027C000812 were:

| Analyte  | RPD  |
|----------|------|
| arsenic  | 16%  |
| barium   | 13%  |
| cadmium  | 27%  |
| chromium | 18%  |
| cobalt   | 1.6% |
| copper   | 3.8% |
| lead     | 32%  |
| nickel   | 22%  |
| vanadium | 5.4% |
| zinc     | 6.8% |

All RPD's for these analytes were within the 60% QC limit for soil samples, so no action was necessary.

X.) Furnace Atomic Absorption QC:

Method of Standard Additions (MSA):

All MSA criteria were met. No action was required.

Post Digestion Spike Recoveries:

All Post Digestion Spike Recovery criteria were met. No action was required.

XI.) Sample Result, Calculation/Transcription Verification:

All criteria were met, so no action was taken.

XII) Quarterly Verification of Instrumental Parameters:

All criteria met, so no action was taken.

XIII.) Overall Assessment of Data/General:

All laboratory data were acceptable with qualification.



# Chemical Services, Inc.

P. O. Box 930422. Norcross. Ga. 30093

# DATA VALIDATION SUMMARY REPORT

COMPANY:

Ensafe/Allen & Hoshall

SITE NAME:

NAS Memphis

PROJECT NUMBER:

8500.024

CONTRACTED LAB:

National Environmental Testing, Inc.

QA/QC LEVEL:

Level III

EPA SOW/METHOD:

EPA 1990 SOW -

VALIDATION GUIDELINES:

USEPA Contract Laboratory Program National Functional

Guidelines for Organic Data Review, 1994; USEPA Contract Laboratory Program National Functional Guidelines for Inorganic

Data Review, 1994

SAMPLE MATRICES:

Soil and Water

TYPES OF ANALYSES:

Volatile Organics (VOA), Total Metals (Metals)

SDG NUMBER:

1446

#### SAMPLES:

| <u>Client</u> | <u>Lab</u> |               |            |               |
|---------------|------------|---------------|------------|---------------|
| Sample #:     | Sample #:  | <b>Matrix</b> | <u>VOA</u> | <u>Metals</u> |
| 027S000301    | 124859     | Soil          |            | X             |
| 027S000306    | 124860     | Soil          |            | X             |
| 027S000312    | 124861     | Soil          |            | X             |
| 027S000401    | 124862     | Soil          |            | X             |
| 027S000406    | 124863     | Soil          |            | X             |
| 027S000412    | 124864     | Soil          |            | X             |
| 027S000501    | 124865     | Soil          |            | X             |
| 027S000506    | 124866     | Soil          |            | X             |
| 027S000512    | 124867     | Soil          |            | X             |
| 027C000512    | 124857     | Soil          | X          | X             |
| 027C000512RE  | 124857RE   | Soil          | X          |               |
| 027S000601    | 124868     | Soil          |            | X             |
| 027S000606    | 124869     | Soil          |            | X             |
| 027S000612    | 124870     | Soil          |            | X             |
| 027S000701    | 124871     | Soil          |            | X             |
| 027S000706    | 124872     | Soil          |            | X             |
| 027S000712    | 124873     | Soil          |            | X             |
| 027S000801    | 124874     | Soil          |            | X             |
|               |            |               |            |               |

| <u>Metals</u> |
|---------------|
| X             |
| X             |
|               |
|               |
|               |
| · · X         |
| X             |
|               |

 $\mathrm{C}=\mathrm{FIELD}$  DUPLICATE,  $\mathrm{H}=\mathrm{FIELD}$  DUPLICATE,  $\mathrm{RE}=\mathrm{REANALYSIS},$   $\mathrm{MS}=\mathrm{MATRIX}$  SPIKE,  $\mathrm{MD}=\mathrm{MATRIX}$  DUPLICATE

DATA REVIEWER(S):

Amy L. Hogan, Marvin L. Smith

**RELEASE SIGNATURE:** 

#### Data Qualifier Definitions:

- J The associated numerical value is an estimated quantity.
- R The data are unusable (the compound/analyte may or may not be present). Resampling and reanalysis are necessary for verification.
- U The compound/analyte was analyzed for, but not detected.
  The associated numerical value is the sample quantitation limit.
- UJ The compound/analyte was analyzed for, but not detected. The sample quantitation limit is an estimated quantity.

#### DATA QUALIFICATION SUMMARY

NET, Inc. - 1446 Organics & Inorganics

SAMPLES: 027S000301, 027S000306, 027S000312, 027S000401, 027S000406, 027S000412,

027S000501, 027S000506, 027S000512, 027S000512MS, 027S000512MD,

027C000512, 027C000512RE, 027H000545, 027S000601, 027S000606, 027S000612, 027S000701, 027S000706, 027S000712, 027S000801, 027S000806, 027C000806,

027C000806RE

#### **VOLATILE ORGANICS**

I.) Holding Times:

All Holding Time criteria were met. No action was required.

II.) GC/MS Tuning:

All GC/MS Tuning criteria were met. No action was necessary.

III.) Calibration:

Initial Calibration:

The Percent Relative Standard Deviation (%RSD) for acetone (39.0%) exceeded the 30% QC limit for the standards run on 6/07/95 on instrument HO5970L. The positive result for acetone in sample 027H000545 was flagged as estimated (J).

#### Continuing Calibration:

The Percent Differences (%D's) of methylene chloride (26.6%) and carbon tetrachloride (26.1%) exceeded the 25% QC limit for the continuing calibration run on 6/14/95 at 10:16 on instrument HP5970K. The non-detect results for these two compounds in sample 027H000545 were flagged as estimated (UJ).

The Percent Difference (%D) of 2-hexanone (25.9%) exceeded the 25% QC limit for the continuing calibration run on 6/13/95 at 09:53 on instrument HP5970L. The non-detect results for this compound in associated samples 027C000512RE and 027C000806 were flagged as estimated (UJ).

#### IV.) Blanks:

Method Blanks:

Methylene chloride was detected at 2.0 ug/L in soil method blank VBLK061395L. The positive results for this compound in associated samples 027C000806 and 027C000512RE, which were less than 10X the blank amount, were flagged as undetected (U) with the laboratory results less than the CRQL being raised to the CRQL.

Methylene chloride was detected at 1.0 ug/L in water blank VBLK061495K. The positive result for this compound in associated sample 027H000545, which was less than 10X the blank amount, was flagged as non-detected with the laboratory results less than the CRQL being raised to the CRQL.

Trip Blank:

There were no trip blanks associated with this SDG. No action was necessary.

TICs:

There were no TIC's reported in the method blanks for this SDG.

#### V.) Surrogate Recoveries:

The Percent Recoveries (%R's) of DCE exceeded the 70-121% QC limits in samples 027C000806 (122%) and 027C000806RE (123%). The positive result for methylene chloride in sample 027C000806RE was flagged as estimated (J). No further action was required.

VI.) Matrix Spike/Matrix Spike Duplicate (MS / MSD):

MS / MSD analysis was not performed in this fraction. No action was taken.

VII.) Field Duplicates:

There were no field duplicate samples for this fraction. No action was necessary.

VIII.) Internal Standards Performance:

The Percent Recoveries (%R's) of 1,4-difluorobenzene (41%) and chlorobenzene-d5 (40%) in sample 027C000512 were below the 50-200% QC limits. All positive and non-detect results for the associated compounds in this sample were flagged as estimated (J) and (UJ).

The Percent Recoveries (%R's) of bromochloromethane (48%), 1,4-difluorobenzene (37%) and chlorobenzene-d5 (35%) in sample 027C000512RE were below the 50-200% QC limits. All associated sample results for these compounds, which consisted entirely of non-detects, were flagged as estimated (UJ).

The Percent Recoveries (%R's) of bromochlorobenzene (40%), 1,4-difluorobenzene (30%) and chlorobenzene-d5 (27%) in sample 027C000806 were below the 50-200% QC limits. All associated

sample results for these compounds, which consisted entirely of non-detects, were flagged as estimated (UJ).

The Percent Recoveries (%R's) of bromochlorobenzene (42%), 1,4-difluorobenzene (36%) and chlorobenzene-d5 (32%) in sample 027C000806RE were below the 50-200% QC limits. The associated positive and non-detect sample results for these compounds were flagged as estimated (J) and (UJ).

IX.) TCL Compound Identification:

All TCL criteria were met, so no action was necessary.

X) Compound Quantitation and Reported Contract Required Quantitation Limits (CRQL's):

All CRQL criteria were met. No action was required.

XI.) Tentatively Identified Compounds (TICs):

All TIC criteria were met, so no action was taken.

XII.) System Performance:

All criteria were met, so no action was necessary.

XIII.) Overall Assessment of Data/General:

All laboratory data were acceptable with qualification. The original sample 027C000512, having fewer qualification flags than the reextraction, was considered by the validator to be of preferable data quality. The original sample 027C000806 was considered by the validator to be of preferable data quality as compared to the reextraction due to shorter holding times.

#### TOTAL METALS

I.) Holding Times:

All Holding Time criteria were met. No action was required.

II.) Calibration:

All Calibration criteria were met. No action was required.

III.) Blanks:

The following blank results represent the highest detections associated with the samples and were used for data qualification:

| Blank    |                |            | Action Level |
|----------|----------------|------------|--------------|
| Type/ID# | <b>Analyte</b> | Max. Conc. | mg/kg        |
| CCB2     | arsenic        | 3.80 ug/L  | 3.80         |
| CCB4     | cobalt         | 3.20 ug/L  | 3.20         |
| PBS      | selenium       | 0.55 mg/kg | 2.75         |
| CCB1     | tin            | 20.2 ug/L  | 20.2         |

CCB = Continuing Calibration Blank, PBS = Preparation Blank Soil

All results greater than the IDL but less than 5X the blank amount (Action Level mg/kg for soil samples) for which the contaminated blank was an associated calibration or laboratory preparation blank were flagged as undetected (U).

The following analytes had negative results with absolute values greater than the IDL's:

| <u>Blank</u> |                |             |            |
|--------------|----------------|-------------|------------|
| Type/ID#     | <u>Analyte</u> | Neg. Conc.  | 5X Conc.   |
| PBS          | silver         | -1.16 mg/kg | 5.80 mg/kg |
| CCB7         | thallium       | -3.20 ug/L  | 3.20 mg/kg |
| CCB3         | zinc           | -13.7 ug/L  | 13.7 mg/kg |

CCB = Continuing Calibration Blank, PBS = Preparation Blank Soil

All associated positive sample results less than 5X the absolute value of the negative blank result were flagged as estimated (J) and all non-detects were flagged as estimated (UJ).

# IV.) ICP Interference Check Sample Results:

All Interference Check Sample criteria were met. No action was required.

# V.) ICP Serial Dilution Analysis:

All Serial Dilution criteria were met, so no action was necessary.

# VI.) Laboratory Control Samples (LCS):

All Laboratory Control Sample criteria were met. No action was required.

# VII.) Duplicate Sample Analysis:

All Duplicate Sample criteria were met. No action was necessary.

# VIII.) Matrix Spike Recoveries:

The Percent Recoveries (%R's) of the following analytes were below the 75-125% QC limits for sample 027S000512MS:

| Analyte  | <b>%</b> R |
|----------|------------|
| antimony | 31.2%      |
| selenium | 22.9%      |
| silver   | 16.9%      |
| thallium | 70.2%      |

All positive and non-detect results for antimony and thallium were flagged as estimated (J) and (UJ). Due to excessively low %R's (<30%) all positive detections of selenium and silver were flagged as estimated (J) and all non-detects were rejected (R).

#### IX.) Field Duplicates:

The Relative Percent Differences (RPD's) for the following analytes were calculated for field duplicate samples 027S000512 and 027C000512:

| <u>Analyte</u> | RPD |
|----------------|-----|
| arsenic        | 41% |
| barium         | 13% |
| beryllium      | 35% |
| chromium       | 14% |
| cobalt         | 34% |
| copper         | 12% |
| lead           | 42% |
| nickel         | 11% |
| selenium       | 43% |
| vanadium       | 36% |
| zinc           | 21% |

All RPD's for these analytes were within the 60% QC limit for soil samples, so no action was taken.

The Relative Percent Differences (RPD's) for the following analytes were calculated for field duplicate samples 027S000806 and 027C000806:

| <u>Analyte</u> | RPD  |
|----------------|------|
| arsenic        | 57%  |
| barium         | 20%  |
| beryllium      | 15%  |
| chromium       | 14%  |
| cobalt         | 28%  |
| copper         | 23%  |
| lead           | 35%  |
| nickel         | 17%  |
| vanadium       | 0.6% |
| zinc           | 67%  |

The RPD for zinc exceeded the 60% QC limit for soil samples, so the results for zinc in these two samples were flagged as estimated (J). The RPD's for the other analytes were within the QC limits. No further action was required.

#### X) Furnace Atomic Absorption QC:

Method of Standard Additions (MSA):

All MSA criteria were met. No action was required.

Post Digestion Spike Recoveries:

All Post Digestion Spike Recovery criteria were met. No action was required.

XI.) Sample Result, Calculation/Transcription Verification:

All criteria were met, so no action was taken.

XII.) Quarterly Verification of Instrumental Parameters:

All criteria met, so no action was taken.

XIII.) Overall Assessment of Data/General:

All non-detect results for selenium and silver were rejected due to low (<30%) percent recoveries in the matrix spike sample. All remaining laboratory data were acceptable with qualification.

#### E/A&H VALIDATION SUMMARY REPORT

Site Name:

NSA Memphis, Millington, Tennessee

CTO and Subtask No.:

0094-04730

Laboratory:

NET, Bedford

Sample Delivery Group:

1717

Matrix:

Soil

#### SDG 1717 Sample IDs and Analyses

| Sample ID      | Appendix IX Metals | SVOCs | Pest/PCBs |  |
|----------------|--------------------|-------|-----------|--|
| 0278000101     |                    | X     | x         |  |
| 027S000201     |                    | X     | X         |  |
| 027S000501 X X |                    |       |           |  |
| 027E030696*    | X                  | X     | X         |  |

Note:

The "\*" in the table above means the sample was a field or rinsate blank. Field and rinsate blanks were used to evaluate contamination in investigative samples. Therefore, results or qualifiers were not changed for these samples.

#### VALIDATION RESULTS

All samples were received by the laboratory intact and with the proper documentation on March 7, 1996, for metals, SVOCs, and pest/PCBs. The following sections summarize the data validation results.

#### Appendix IX Metals Fraction

1. Results in this SDG were for a rinsate blank only. Validation of the rinsate blank was not required. Any detections in the rinsate blank were assessed against associated samples in other SDGs.

#### **SVOC Fraction**

- 1. All holding times, GC/MS instrument performance checks, initial calibrations, continuing calibrations, surrogate recoveries, and internal standard performance were acceptable. No problems were encountered during review of sample result verification.
- 2. Di-n-butylphthalate was detected in one method blank and in rinsate blank 027E030696. The sample results were all less than the PQL; therefore, qualification of the data was not necessary.

#### Pesticide/PCB Fraction

1. All holding times, surrogate recoveries, blanks, and initial calibrations were

- acceptable. No problems were encountered during review of sample result verification.
- 2. The following compounds exceeded the 25% maximum control limits for the continuing calibration check:

**Continuing Calibration Check Deficiencies** 

| Compound     | % Difference | Column | Associated Samples                  |
|--------------|--------------|--------|-------------------------------------|
| 4,4'-DDE     | 40.1         | RXT15  | 027S000101 027S000201<br>027S000501 |
| Aroclor-1260 | 27.3         | RXT15  | 027S000101Dil 027S000201Dil         |
| 4,4'-DDE     | 46.2         | RXT15  | 027S000101Dil 027S000201Dil         |
| 4,4'-DDE     | 34           | RXT15  | 027S000501Dil                       |

All results were less than the PQL and therefore were qualified as estimated (UJ).

3. Dieldrin in all three samples and alpha-Chlordane and gamma-Chlordane in sample 027S000201 exceed the calibration range. The values which exceeded the calibration range were substituted by diluted values.

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 1 Time: 15:23

| APX9-HETAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | SAMPLE ID> CRIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> LMITS> | 027-S-0001-1<br>027S000101<br>1-124683S<br>027S000101<br>06/06/95<br>Soil<br>MG/KG | <b>)1</b>            | 027-\$-0001-<br>027\$000105<br>1-124684\$<br>027\$000105<br>06/06/95<br>\$011<br>MG/KG | <b>)</b> 5                  | 027-s-0001-1/<br>027s000114<br>1-124685s<br>027s000114<br>06/06/95<br>soil<br>MG/KG | 4      | 027-s-0002-0<br>027s000201<br>1-1246865<br>027s000201<br>06/06/95<br>soll<br>MG/KG | 1        | 027-s-0002-0<br>027s000206<br>1-124687s<br>027s000206<br>06/06/95<br>sail<br>MG/KG | 6              | 027-s-0002-1<br>0278000212<br>1-1246888<br>0278000212<br>06/06/95<br>\$011<br>MG/KG | 12                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-----------------------------------------|
| CAS # Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rameter                                 |                                                                                    | 1441                                                                               | VAL                  | 1441                                                                                   | VAL                         | 1441                                                                                | VAL    | 1441                                                                               | VAL      | 1441                                                                               | YAL            | 1441                                                                                | VAL                                     |
| Material Company of the Company of t | timony                                  |                                                                                    | 19.1                                                                               | J                    | 20.4                                                                                   | J                           | 12.8                                                                                | UR     | 18.5                                                                               | J        | 18.                                                                                | J              | 12.8 .                                                                              | 000000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | senic                                   |                                                                                    | 33.                                                                                | J                    | 11.9                                                                                   | J                           | 6.4                                                                                 | J      | 15.9                                                                               | J        | 13.2                                                                               | j              | 5.3                                                                                 |                                         |
| BA Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #0.666666666000000000666000000          |                                                                                    | 153.                                                                               | J                    | 160.                                                                                   | J                           | 72.9                                                                                | J      | 109.                                                                               | J        | 191.                                                                               | J              | 73.8                                                                                | J                                       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ryllium<br>                             |                                                                                    | 1.2                                                                                | J                    | 0.42                                                                                   | J                           | 0,34                                                                                | J      | 0.97                                                                               |          | 0.54                                                                               | J              | 0.33<br>1.3                                                                         |                                         |
| CD Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88668446688000,0000000000               |                                                                                    | 1.3                                                                                | J                    | 2.6                                                                                    | J                           | 2.2                                                                                 | J      | 0.7                                                                                | IJ       | 2.4                                                                                | j              |                                                                                     | J                                       |
| CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | romium<br>bole                          |                                                                                    | 9.<br>3.8                                                                          | ni<br>i              | 9,4                                                                                    | j<br>j                      | 6.4<br>7.4                                                                          | )<br>j | 5.5<br>4.5                                                                         | n1<br>1  | 10.3<br>11.9                                                                       | J              | 7.4<br>8.                                                                           | j                                       |
| cu co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                    | 13.5                                                                               | j.                   | 17.5                                                                                   | i                           | 12.7                                                                                | j      | 14.3                                                                               | <b>J</b> | 18.                                                                                | i i            | 16.1                                                                                |                                         |
| PB Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • • • • • • • • • • • • • • • • • • • |                                                                                    | 40.4                                                                               |                      | 12.6                                                                                   |                             | **************************************                                              |        | 22.9                                                                               |          | 14.5                                                                               | auti Messesses | 10.7                                                                                |                                         |
| 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rcury                                   |                                                                                    | 1.6                                                                                |                      | 0.12                                                                                   | U                           | 0.12                                                                                | U      | 0.3                                                                                |          | 0.12                                                                               | M 44           | 0.12                                                                                |                                         |
| NI Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                    | 5.5                                                                                | UJ                   | 20.8                                                                                   | J                           | 15.1                                                                                | J      | 5.9                                                                                | UJ       | 26.3                                                                               | J              | 16.5                                                                                | J                                       |
| ,00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cket<br>Lenium                          |                                                                                    | 0.48                                                                               | 60000000000000000000 | 0.52                                                                                   | AND AND ASSESSMENT OF STATE | 0.51                                                                                | ับ     | 0.47                                                                               | Ü        | 0.51                                                                               |                | 0.51                                                                                | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 |
| AG Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                    | 6.6                                                                                | J                    | 0.77                                                                                   |                             | 0.77                                                                                | UJ     | 2.3                                                                                | UJ       | 0.77                                                                               | UJ             | 0.77                                                                                |                                         |
| 6606960606444696666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | altium                                  |                                                                                    |                                                                                    | บม                   | 0.52                                                                                   |                             | 0.51                                                                                | เม     | 0.47                                                                               |          | 0.51                                                                               |                |                                                                                     | UJ                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nadium                                  |                                                                                    | 9.7                                                                                | J                    | 19.9                                                                                   | J                           | 14.6                                                                                | J      | 12.7                                                                               | J        | 22.5                                                                               | J              | 15.6                                                                                | J                                       |
| ZN Zi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                    | 178.                                                                               |                      | 54.2                                                                                   |                             | 39.9                                                                                | •      | 69.7                                                                               | •        | 60.8                                                                               |                | 51.1                                                                                |                                         |
| SN Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                    | 12.1                                                                               | J                    | 3.9                                                                                    | UJ                          | 5.5                                                                                 | J      | 5.5                                                                                | J        | 4.4                                                                                | J              | 3.8                                                                                 | UJ                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                    |                                                                                    |                      |                                                                                        |                             |                                                                                     |        |                                                                                    |          |                                                                                    |                |                                                                                     |                                         |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 2 Time: 15:23

APX9-RETAL 027-S-0003-06 027-s-0003-12 027-5-0004-01 027-5-0004-06 027-5-0004-12 SAMPLE ID ----> 027-5-0003-01 0278000401 ORIGINAL ID ----> 0278000301 0278000306 0275000312 0278000406 0275000412 8-124860s 8-1248635 8-1248645 8-1248598 8-1248615 8-1248625 LAB SAMPLE ID ---> 0278000306 0278000301 0275000312 0275000401 0275000406 0275000412 ID FROM REPORT --> SAMPLE DATE ----> 06/08/95 06/08/95 06/08/95 06/08/95 06/08/95 06/08/95 MATRIX ----> Soil Soil Soil Soil Sail Soil MG/KG MG/KG MG/KG MG/KG MG/KG UNITS ----> MG/KG CAS # Parameter 1446 VAL 1446 VAL 1446 1446 1446 1446 VAL VAL VAL VAL SB Antimony 11.8 UJ 12.3 IJ 12.9 UJ 13.9 IJ 12.3 IJ 12.9 UJ AS Arsenic 4.9 6.3 10.6 3.5 10.3 10. BA Barium 111. 197. 131. 225. 163. 100. BE Beryllium 0.61 0.46 J 0.68 0.46 0.41 0.83 CD Cadmium 0.97 0.74 U 0.77 1.6 0.74 U 0.78 U CR Chromium 14.3 8.6 13.8 17. 11.6 10.8 CO Cobalt 3.2 11.7 7.2 5.8 J 10. 8.7 CU Copper 17.6 10. 12.4 38.4 11.7 12.9 40.9 7.7 PB Lead 11.9 60.5 11.6 11.7 HG Mercury 1.2 0.12 U 0.12 U 1.7 0.12 U 0.12 U NI Nickel 9.1 22.7 24. 28.1 20.1 11. SE Selenium 0.76 UR 0.7 UR 0.73 UR 0.71 UR 0.63 UR 0.75 UR AG Silver 1.2 UR 1.2 UR 1.3 UR 8.4 1.2 UR 1.3 UR Thallium 0.47 IJ 0.49 UJ IJ IJ 0.49 IJ 0.51 0.56 0.52 IJ Vanadium 11.1 20.8 24.6 17.7 18.8 17.3 ZN Zinc 155. 47.1 57. 239. 54.5 53.1 SN Tin 16.6 U 4.2 7.1 22.1 3.7 U U J U 6.8 U

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 3 Time: 15:23

|                            |                                                                                    |                                                                                       |                                                                                                               | 5                                                                                        | WMU .                                              | 21                                                                                       |                                         |                                                                                      |                 |                                                                                    |                                         |                                                                                         |                                         |
|----------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|
| NPK9-HETAL                 | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 027-\$-0005-<br>027\$000501<br>8-124865\$<br>027\$000501<br>06/08/95<br>Soil<br>MG/KG | 01                                                                                                            | 027-\$-0005-00<br>027\$000506<br>8-124866\$<br>027\$000506<br>06/08/95<br>\$011<br>HG/KG | •                                                  | 027-\$-0005-1:<br>027\$000512<br>8-124867\$<br>027\$000512<br>06/08/95<br>\$011<br>MG/KG | 2                                       | 027-C-0005-1;<br>027C000512<br>8-1248575<br>027C000512<br>06/08/95<br>\$011<br>MG/KG |                 | 027-S-0006-0<br>027S000601<br>8-124868S<br>027S000601<br>06/08/95<br>Soil<br>MG/KG | 1                                       | 027-\$-0006-0<br>027\$000606<br>8-124869\$<br>027\$000606<br>06/08/95<br>\$oil<br>MG/KG | 6                                       |
| CAS # Parameter            |                                                                                    | 1446                                                                                  | VAL                                                                                                           | 1446                                                                                     | VAL                                                | 1446                                                                                     | VAL                                     | 1446                                                                                 | VAL             | 1446                                                                               | VAL                                     | 1446                                                                                    | VAL                                     |
| SB Antimony                |                                                                                    | 12.1                                                                                  | υJ                                                                                                            | 12.3                                                                                     | UJ                                                 | 12.5                                                                                     | υJ                                      | 12.4                                                                                 | UJ              | 12.8                                                                               | Πĵ                                      | 12.1                                                                                    | ΩJ                                      |
| AS Arsenic                 |                                                                                    | 9,4                                                                                   |                                                                                                               | 5.6                                                                                      |                                                    | 5.1                                                                                      |                                         | 7.7                                                                                  |                 | 7.7                                                                                |                                         | 8.9                                                                                     |                                         |
| BA Barium                  |                                                                                    | 202.                                                                                  | C20020 <b>3</b> 03963666                                                                                      | 121.                                                                                     | 4100 <b>4</b> 00000000                             | 115.                                                                                     | 800012000000000000000000000000000000000 | 131.                                                                                 |                 | 120.                                                                               | 800 900 200 000 000                     | 294.                                                                                    | 888882863863                            |
| BE Beryllium<br>CD Cadmium |                                                                                    | 0.45<br>0.82                                                                          |                                                                                                               | 0,34<br>0.74                                                                             | J<br>U                                             | 0.4<br>0.75                                                                              | J<br>U                                  | 0.57<br>0.75                                                                         | j<br>U          | 0.65<br>0.77                                                                       | J                                       | 0.72                                                                                    | U                                       |
| CR Chromium                |                                                                                    | 11.2                                                                                  |                                                                                                               | 9.9                                                                                      |                                                    | 15.                                                                                      |                                         | 17.3                                                                                 | <b></b>         | 16.4                                                                               |                                         | 16.7                                                                                    |                                         |
| CO Cobalt                  |                                                                                    | 8.                                                                                    | J                                                                                                             | 6.1                                                                                      | J                                                  | 5.1                                                                                      | J                                       | 7.2                                                                                  | J               | 6.6                                                                                | J                                       | 8.7                                                                                     | J                                       |
| CU Copper                  |                                                                                    | 23.5                                                                                  | •                                                                                                             | 7.1                                                                                      |                                                    | 7.9                                                                                      |                                         | 8.9                                                                                  |                 | 11.                                                                                |                                         | 13.1                                                                                    |                                         |
| PB Lead                    |                                                                                    | 43.7                                                                                  | 55-045-00-02-02-02-02-02-02-02-02-02-02-02-02-                                                                | 7.                                                                                       |                                                    | 7.8                                                                                      |                                         | 11.9                                                                                 | 866663246974699 | 30.6                                                                               | 999999999999999                         | 9.4                                                                                     | 0.0000000000000000000000000000000000000 |
| HG Mercury                 |                                                                                    | 0.75                                                                                  |                                                                                                               | 0.12                                                                                     | u                                                  | 0.12                                                                                     | 11                                      | 0.12                                                                                 | 11              | 0.25                                                                               |                                         | 0.11                                                                                    | Ú                                       |
| NI Nickel                  |                                                                                    | 18.7                                                                                  | .cc-200000000000000000000000000000000000                                                                      | 14.9                                                                                     | *:::: <del>**</del> :::::::::::::::::::::::::::::: | 14.9                                                                                     | ***********                             | 16.6                                                                                 |                 | 14.9                                                                               | 000000000000000000000000000000000000000 | 33.1                                                                                    | >->                                     |
| SE Selenium                |                                                                                    | 0.58                                                                                  | UR                                                                                                            | 0.52                                                                                     | UR                                                 | 1,1                                                                                      | UR                                      | 0.71                                                                                 | UR              | 0.86                                                                               | 떖                                       | 0.54                                                                                    | UR                                      |
| AG Silver                  | udinada naga sanan sanah dalah sada dan sanah dalah dalah dalah dalah sa           | 2.3                                                                                   | 7                                                                                                             | 1.2                                                                                      | UR                                                 | 1.2                                                                                      | UR                                      | 1.2                                                                                  | UR              | 1.3                                                                                | UR                                      | 1.2                                                                                     | UR                                      |
| TL Thellium                |                                                                                    | 0.48                                                                                  | U.I                                                                                                           | 0.49                                                                                     | UJ                                                 | 0.5                                                                                      | UJ .                                    | 0.87                                                                                 | UJ              | 0.51                                                                               | บง                                      | 0.48                                                                                    | UJ                                      |
| V Vanadium                 |                                                                                    | 15.4                                                                                  | Santa S | 14.4                                                                                     | CONTRACTOR OF THE                                  | 17.5                                                                                     | ASSEST STANDARDS                        | 25.1                                                                                 |                 | 19.1                                                                               | V-000000000                             | 30.                                                                                     | r krysterrayannanas                     |
| ZN Zinc                    |                                                                                    | 138.                                                                                  |                                                                                                               | 39.5                                                                                     |                                                    | 45.9                                                                                     |                                         | 56.9                                                                                 |                 | 86.8                                                                               |                                         | 73.4                                                                                    |                                         |
| SN Tin                     |                                                                                    | 11.3                                                                                  | U                                                                                                             | 4.8                                                                                      | U                                                  | 3.7                                                                                      | U                                       | 3.7                                                                                  | ŭ               | 6.4                                                                                | U                                       | 6.4                                                                                     | U                                       |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 4 Time: 15:23

APX9-METAL 027-5-0006-12 027-S-0007-01 027-S-0007-06 027-5-0007-12 027-5-0008-01 027-5-0008-06 SAMPLE ID ----> ORIGINAL ID ----> 0278000612 0275000701 0275000706 0278000712 0278000801 0275000806 8-124870s 8-1248715 8-1248725 8-1248735 8-1248745 8-1248755 LAB SAMPLE ID ---> 0275000701 0278000801 0275000612 0275000706 0275000712 0275000806 ID FROM REPORT --> SAMPLE DATE ----> 06/08/95 06/08/95 06/08/95 06/08/95 06/08/95 06/08/95 MATRIX -----> Soil Soit Soil Soil Soil Soil UNITS ----> MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG CAS # Parameter 1446 1446 1446 1446 1446 1446 VAL VAL VAL VAL VAL VAL SB Antimony 12.6 UJ 10.7 UJ 12. LU 11.9 LU 11.3 บม 12.3 7. AS Arsenic 5.1 4. 8.7 10.6 14.2 BA Barium 110. 148. 167. 151. 110. 138. BE Beryllium 0.39 0.21 0.46 J 0.41 0.38 0.44 1 CD Cadmium 0.76 U 0.97 0.72 0.72 U 0.68 0.74 u CR Chromium 13.4 6.7 15. 13.5 12.8 10,2 CO Cobalt 4.2 1.3 u 7. 7.6 7.9 9.3 38.3 CU Copper 8.6 7.7 7.4 8.8 11.8 PB Lead 6.1 277. 7.8 10.6 24.7 14.5 HG Mercury 0.12 U 3.1 0.11 U 0.11 0.13 0.12 Nickel 21.8 14.4 5.3 u 19.6 19.4 14.8 SE Selenium 0.71 UR 0.48 0.48 0.45 UR 0.43 UR UR UR 0.49 AG Silver 1.3 UR 15.8 1.2 1.2 UR 1.1 UR 1.2 UR UR TL Thellium 0.43 0.48 UJ 0.5 UJ UJ IJ 0.48 0.45 IJ 0.49 IJ Vanadium 12.9 2.8 23.5 19.8 18.3 17.2 ZN Zinc 55.5 58.5 49.1 89.2 163. 45.4 SN Tin 3.8 19.9 U 4. Ш 6. U 4.1 7.7

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 5 Time: 15:23

APX9-METAL SAMPLE ID -----> 027-C-0008-06 027-5-0008-12 027-C-0008-12 027-5-0009-01 027-5-0009-06 027-S-0009-12 ORIGINAL ID ----> 027000806 0275000812 0270000812 0278000901 0278000906 0278000912 LAB SAMPLE ID ---> 8-124858s 9-124878\$ 9-1248775 9-1248795 9-124880\$ 9-1248815 0275000912 027000806 0278000812 0270000812 0275000901 0278000906 ID FROM REPORT --> 06/08/95 06/08/95 06/08/95 06/08/95 SAMPLE DATE ----> 06/08/95 06/08/95 MATRIX -----> Soil Soil Soil Soil Sail Soil WITS -----> MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG CAS # Perameter 1446 YAL 1447 VAL 1447 VAL 1447 VAL 1447 VAL 1447 VAL SB Antimony 12.1 UJ 12.5 IJ 12.6 IJ 12.3 UJ 12.8 13. LU 7.9 7.9 AS Arsenic 9.2 7.8 11.2 13.7 BA Barium 113. 77.8 68.6 52.7 60.1 134. BE Bervilium 0.38 0.3 0.3 0.33 0.47 0.28 Cadmium 0.73 0.78 u 0.99 1.3 1.1 1.9 UJ CR Chromium 11.7 9.7 4.9 6.7 8. 10. CO Cobalt 7. 6.5 6.4 5.4 7.1 5.7 CU Copper 9.4 12.9 13.4 11.3 18.1 13.2 9.6 9. Lead 9.4 6.8 10.2 13. 0.12 HG Mercury 0.12 0.12 0.12 U 0.12 U U 0.12 NI Nickel 18.3 23.2 18.5 10.2 26.6 17.5 0.5 SE Selenium 0.75 UR 0.53 0.51 UJ 0.51 IJ 0.53 AG Silver 1.2 0.83 0.74 0.76 0.97 UR 0.77 TL Thattium 0.49 0.51 UJ 0.5 0.48 IJ 0.5 IJ 0.51 IJ IJ V Vanadium 17.1 12.5 13.2 26.1 18.9 13.1 ZN Zinc 40. 42.8 59. 38. 44.6 31.6 SNITin 7.7 4.8 U 5.2 3.8 U 3.7 U 4.3 U U

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 6 Time: 15:23

| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05/20/96   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SWMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time: 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 309-00-2   Aldrin   2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBA6-PEST | ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE AMALYZED> MATRIX>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 027\$\$B1001<br>143759<br>027\$\$B1001<br>03/06/96<br>03/14/96<br>03/16/96<br>\$oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 027\$\$B1101<br>143760<br>027\$\$B1101<br>03/06/96<br>03/14/96<br>03/16/96<br>\$011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0275SB1201<br>143761<br>0275SB1201<br>03/06/96<br>03/14/96<br>03/18/96<br>Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-89-9   Somma-BIC (Lindene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAS #      | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1717 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1717 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1717 VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-89-9 samma-BHC (Lindane) 319-84-6 alpha-BHC 2.1 U 2. U 2. U 2. U 3. 319-85-7 beta-BHC 2.1 U 2. U 2. U 2. U 3. 319-85-7 beta-BHC 319-85-7 beta-BHC 2.1 U 2. U 2. U 2. U 3. 319-85-8 delta-BHC 2.1 U 2. U 2. U 2. U 3. 319-85-8 delta-BHC 2.1 U 2. U 2. U 3. U 3. 319-85-8 delta-BHC 319-85-9 4,41-DDD 4.2 U 4. U 2.6 J 3. 319-85-9 delta-BHC 30-97-3 4,41-DDF 7.1 J 19. J 14. J 3. 319-9 delta-BHC 320-09-3 4,41-DDF 7.1 J 19. J 14. J 3. 3213-65-9 delta-BHC 33213-65-9 delta-BHC 33 | 309-00-2   | Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 319-85-7 beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58-89-9    | gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 319-86-8   delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 319-86-8   delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72-55-9 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 319-86-8   | delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72-55-9 4, 4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72-54-8    | 4.41-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50-29-3 4,4'-DDT 7.1 J 19. J 14. J 60-57-1 Dieldrin 200. D 1200. D 710. D 99-98-8 Endosulfan I 2.1 U 2. U 2. U 3.3213-65-9 Endosulfan II 4.2 U 4. U 4.1 U 9.1031-07-8 Endosulfan sulfate 4.2 U 4. U 4.1 U 9.72-20-8 Endrin 4.2 U 8.1 J 4.5 7421-93-4 Endrin aldehyde 4.2 U 4. U 4.1 U 9.72-20-8 Endrin aldehyde 4.2 U 4. U 4.1 U 9.72-20-8 Heptachlor 2.1 U 2. U 2. U 2. U 9.72-20-8 Heptachlor 2.1 U 2. U 2. U 2. U 9.72-20-8 Heptachlor 90-00-00-00-00-00-00-00-00-00-00-00-00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60-57-1   bieldrin   200. D   1200. D   710. D   710. D   759-98-8   Endosulfan I   2.1 U   2. U   4. U   4.1 U   759-98-8   Endosulfan II   4.2 U   4. U   4.1 U   759-98-8   Endosulfan sulfate   4.2 U   4. U   4.1 U   759-98-8   Endosulfan sulfate   4.2 U   4. U   4.1 U   759-98-8   Endrin   4.2 U   8.1 J   4.5   759-98-8   Endrin   4.2 U   8.1 J   4.5   759-98-8   Endrin   4.2 U   4. U   4.1 U   759-98-8   Endrin   4.2 U   4.0 U   4.1 U   759-98-98   Endrin   4.2 U   4.0 U   4.1 U   4.1 U   759-98-98   Endrin   4.2 U   4.0 U   4.1 U   4.1 U   759-98-98   Endrin   4.2 U   4.0 U   4.1 U   4.1 U   759-98-98   Endrin   4.2 U   4.0 U   4.1 U   4.1 U   759-98-98   Endrin   4.2 U   4.0 U   4.1 U   | 50-29-3    | 4,41-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19. J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14. J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SSP-98-8   Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Electric and the second       | and committee and an annual co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33213-65-9   Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The state of the s       | AND CONTRACTOR OF THE PROPERTY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1031-07-8 Endosulfan sulfate 4.2 U 4. U 4.1 U 7-2-20-8 Endrin 4.2 U 8.1 J 4.5 T 7-20-8 Endrin 1 4.2 U 8.1 J 4.5 T 7-20-8 Endrin 1 4.2 U 8.1 J 4.5 T 7-20-8 Endrin 1 4.2 U 4. U 4.1 U 4.1 U 7-2-2-20 Endrin 1 4.2 U 2. U 2. U 2. U 1 4. U 4.1 U 1 4.1 U |            | <ul> <li>Research of the second s</li></ul> | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72-20-8     Endrin     4.2     U     8.1     J     4.5       7421-93-4     Endrin aldehyde     4.2     U     4.     U     4.1     U       76-44-8     Heptachlor     2.1     U     2.     U     2.     U       1024-57-3     Heptachlor epoxide     3.2     J     19.     6.     J       72-43-5     Methoxychlor     21.     U     20.     U     20.     U       8001-35-2     Toxaphene     42.     U     40.     U     41.     U       1104-28-2     Aroclor-1016     42.     U     40.     U     41.     U       1114-16-5     Aroclor-1221     42.     U     40.     U     41.     U       1114-16-5     Aroclor-1232     42.     U     40.     U     41.     U       12672-29-6     Aroclor-1242     42.     U     40.     U     41.     U       11097-69-1     Aroclor-1254     42.     U     40.     U     41.     U       11097-69-1     Aroclor-1260     42.     U     40.     U     41.     U       53494-70-5     Endrin ketone     4.2.     U     4.     U     4.     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1031-07-8  | Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 550 <b>-</b> 5505 5505 5505 5505 5505 5505 5505 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7421-93-4 Endrin aldehyde 4.2 U 4. U 4.1 U 76-44-8 Heptachlor 2.1 U 2. U 2. U 76-44-8 Heptachlor 2.1 U 2. U 2. U 76-44-8 Heptachlor epoxide 3.2 J 19. 6. J 72-43-5 Hethoxychlor 21. U 20. U 20. U 76-46-8 Hethoxychlor 21. U 20. U 20. U 76-46-8 Hethoxychlor 21. U 40. U 41. U 76-46-11-2 Aroclor-1016 42. U 40. U 41. U 76-46-8 Aroclor-1221 42. U 40. U 41. U 76-46-8 Aroclor-1232 42. U 40. U 41. U 76-46-8 Aroclor-1242 42. U 40. U 41. U 76-46-8 Aroclor-1248 42. U 40. U 41. U 76-46-8 Aroclor-1248 42. U 40. U 41. U 76-46-8 Aroclor-1256 Aroclor-1256 42. U 40. U 41. U 76-46-8 Aroclor-1256 Aroclor-1256 Aroclor-1256 Aroclor-1256 Aroclor-1256 Aroclor- | 72-20-8    | Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76-44-8 Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7421-93-4  | Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1024-57-3   Heptachlor apoxide   3.2 J   19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 72-43-5 Methoxychlor 21. U 20. U 20. U 20. U 20. U 20. U 8001-35-2 Toxaphene 42. U 40. U 41. U 12674-11-2 Aroclor-1016 42. U 40. U 41. U 11104-28-2 Aroclor-1221 42. U 40. U 41. U 11141-16-5 Aroclor-1232 42. U 40. U 41. U 53469-21-9 Aroclor-1242 42. U 40. U 41. U 12672-29-6 Aroclor-1248 42. U 40. U 41. U 12672-29-6 Aroclor-1254 42. U 40. U 41. U 12672-29-6 Aroclor-1260 42. U 40. U 41. U 4 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. 54   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10   1. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8001-35-2 Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12674-11-2       Aroctor-1016       42.       U       40.       U       41.       U         11104-28-2       Aroctor-1221       42.       U       40.       U       41.       U         11141-16-5       Aroctor-1232       42.       U       40.       U       41.       U         53469-21-9       Aroctor-1242       42.       U       40.       U       41.       U         12672-29-6       Aroctor-1248       42.       U       40.       U       41.       U         11097-69-1       Aroctor-1254       42.       U       40.       U       41.       U         11096-82-5       Aroctor-1260       42.       U       40.       U       41.       U         53494-70-5       Endrin ketone       4.2       U       4.       U       4.1       U         5103-71-9       alpha-Chlordane       19.       120.       D       2.       U         5103-74-2       gamma-Chlordane       8.1       200.       U0       2.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11104-28-2 Aroctor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11141-16-5 Aroctor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53469-21-9 Aroctor-1242 42, U 40, U 41, U 12672-29-6 Aroctor-1248 42, U 40, U 41, U 11097-69-1 Aroctor-1254 42, U 40, U 41, U 11096-82-5 Aroctor-1260 42, U 40, U 41, U 53494-70-5 Endrin ketone 4,2 U 4, U 4,1 U 5103-71-9 alpha-Chlordane 19, 120, D 2, U 5103-74-2 gamma-Chlordane 8,1 200, U0 2, U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12672-29-6     Aroctor-1248     42. U     40. U     41. U       11097-69-1     Aroctor-1254     42. U     40. U     41. U       11096-82-5     Aroctor-1260     42. U     40. U     41. U       53494-70-5     Endrin ketone     4.2 U     4. U     4.1 U       5103-71-9     alpha-Chlordane     19. 120. D     2. U       5103-74-2     gamma-Chlordane     8.1     200. U0     2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the contract of the contra       | \$1.5 m (1.5 m), 1.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | resident automorphisme de la finite de la companion de la companion de la companion de la companion de la comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11097-69-1 Aroctor-1254 42. U 40. U 41. U 11096-82-5 Aroctor-1260 42. U 40. U 41. U 53494-70-5 Endrin ketone 4.2 U 4. U 4.1 U 5103-71-9 alpha-Chlordane 19. 120. D 2. U 5103-74-2 gamma-Chlordane 8.1 200. UD 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | Section 10 and 1 |
| 11096-82-5 Aroctor-1260 42. U 40. U 41. U 53494-70-5 Endrin ketone 4.2 U 4. U 4.1 U 5103-71-9 alpha-Chlordane 19. 120. D 2. U 5103-74-2 gemma-Chlordane 8.1 200. U0 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>**CONTRACTOR **CONTRACTOR **CON</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53494-70-5 Endrin ketone 4.2 U 4. U 4.1 U 5103-71-9 alpha-Chlordane 19. 120. D 2. U 5103-74-2 gamma-Chlordane 8.1 200. UD 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$100000 15 00000 10000 1000 1000 1000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5103-71-9 alpha-Chlordane 19. 120. D 2. U 5103-74-2 gamma-Chlordane 8.1 200. UD 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anni annanna anna annanà dia kaomana anà amana ao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5103-74-2 gamma-Chlordane 8.1 200. UD 2. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the state of the s | additional to the control of our conditional addition of a discontinuous section of a control of the control of |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sandra and the Company of the Compan       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 7 Time: 15:23

| DAS 8   Parameter   1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sub46-Syda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 027-s-0001-01<br>02755B1001<br>143759<br>02755B1001<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 027-s-0002-01<br>0275SB1101<br>143760<br>0275SB1101<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 027-s-0005-01<br>027ssB1201<br>143761<br>027ssB1201<br>03/06/96<br>03/11/96<br>03/12/96<br>soil<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1311-44-   1312-Chloroethyl)ethe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VAL                 | 1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 95-97-8   2-chtorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108-95-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 541-73-1   3-9-01ch1orobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111-44-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bis(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 420.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                   | 400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 100-64-7   1,4-0 ich lorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95-57-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 420.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                   | 400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 95-50-1 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control of the second section of the second  |                     | 400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contract Secretarian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 95-48-7 2-Nethylphenol (o-Cresol) 420. U 400. U 410. U 410 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTRA DE A CONSTRUCTOR VIVE ANGUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THAT IS NOT         | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONTRACTOR CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are a service and a service an | 55-2 <b>66</b> 55555555555522255555555555555555 | 0550,5500,00000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |
| 108-60-1   2,2*-oxybis(1-Chloropropane)   420. U   400. U   410. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO U.S. CAMPAGE CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | n i dea lear i constitutada de la constitución de l       | 30.240.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 106-44-5   4-Hetrylphenol (p-Cresol)   420, U   400, U   410, U    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | January Comment     | <ul> <li>Laborator (1), 1991. 1995 00 00 00 00 00 00 00 00 00 00 00 00 00</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | variation and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>คระสมสมราชการสาราชิการ์สติดสิธิสุดสาราชสาราชสาราชสาราชสาราชสาราชสาราชสารา</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | antropostations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | D (1888)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>                                       |
| 621-64-7 67-72-1   Hexachtoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Consideration of the Control of the        | o various de contrata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A CONTRACTOR CONTRACTO      | CONTRACTOR CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 67-72-1   Nexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carantonia coccaniano de la compania del la compania de la compania de la compania del la compania de la compania del la compania de la compania del la compania de la compania de la compania del la compania de la compania del la co |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - EL TELESCOPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | V. 200 MARKO (N. 1800 M. S. 2000 M. 1800 M. 18 |                                            |
| 98-95-3 #itrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | harman tarah da karan sa karan da kara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3333 <del>35</del> 333333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 78-59-1   Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | กระบบ และ เปลี่ยวใหม่จากสิ่นเรียกเหมือน                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NATIONAL PROGRAMMATION AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INTERNAL INTERNATIONAL PROPERTY OF A PROPERT | 575000              | sa mananana sasanahida babasa ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anananan establish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oosoobooodaadad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000000000000000000000000000000000000          | 60406060000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |
| 88-75-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | **************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 105-67-9   2,4-Dimethylphenol   420, U   400, U   410,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$25000 \$400 \$200 \$200 \$200 \$200 \$200 \$200 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at a comment        | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | contract street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v. 2070000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 120-83-2   2,4-Dichlorophenol   420. U   400. U   410.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | contribution constitution at a constitution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Salar Contract      | neumonous de de la compansión de la comp       | Control of the delice and see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | social address and security of a confidence and a security of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 120-82-1 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //documents/parage/2005/2005/2005/2005/2005/2005/2005/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VANA - 12-12        | * ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00070000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>************************************</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8664070000808000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 91-20-3 Maphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State and a service of the service of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Action and the      | the committee of the control of the        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *******************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND THE RESERVE OF THE PROPERTY OF THE PROPERT |                     | TO COLOR TO SERVICE OF THE PROPERTY OF THE PRO       | ar a salaran makan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 9-24-48030000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| 87-68-3 Hexachtorobutadiene 420. U 400. U 410. U 59-50-7 4-Chtoro-3-methylphenol 420. U 400. U 410. U 91-57-6 2-Methylphenol 91-50-6 2-4,6-Trichlorophenol 91-50-6 2-4,5-Trichlorophenol 91-50-6 91-58-7 2-Chloronaphthalene 91-50-6 91-58-7 2-Chloronaphthalene 91-50-6 91-58-7 2-Chloronaphthalene 91-50-6 91-58-7 2-Mitroaniline 91-50-6 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2007 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Committee of the Commit       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s      | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 111-91-1   bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | เดินเดินได้เดิน ได้เดินได้เดินได้เดินแล้ว ที่เดินได้เดินแล้ว เรายนเทพ เดา เดินแล้วและเลย เลย เลยเฉพาะเลย                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | A. J. S. J. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V. 1887 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 59-50-7       4-Chloro-3-methylphenol       420.       U       400.       U       410.       U         91-57-6       2-Methylnaphthalene       420.       U       63.       J       410.       U         77-47-4       Hexachlorocyclopentadiene       420.       U       400.       U       410.       U         88-06-2       2,4,6-Trichlorophenol       1000.       U       1000.       U       1000.       U         95-95-4       2,4,5-Trichlorophenol       1000.       U       1000.       U       1000.       U         91-58-7       2-Chloronaphthalene       420.       U       400.       U       410.       U         88-74-4       2-Nitroaniline       1000.       U       1000.       U       1000.       U         131-11-3       Dimethyl phthalate       420.       U       400.       U       410.       U         208-96-8       Accephthylene       420.       U       400.       U       410.       U         99-09-2       2,6-Dinitrotoluene       420.       U       400.       U       410.       U         98-32-9       Accephthene       420.       U       300.       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control to the artists of the artist | 11 5 7 W. W. T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commence of the control of the contr |                     | author in the contract of the        | Actual Control of the | The second contract to the contract con      | entra de la constanta de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 91-57-6 2-Methylnaphthalene 420. U 63. J 410. U 88-06-2 2,4,6-Trichlorophenol 420. U 400. U 410. U 95-95-4 2,4,5-Trichlorophenol 1000. U 1000. U 1000. U 1000. U 91-58-7 2-Chloronaphthalene 420. U 400. U 410. U 88-74-4 2-Mitroaniline 1000. U 1000. U 1000. U 1000. U 131-11-3 Dimethyl phthalate 420. U 400. U 410. U 208-96-8 Acenaphthylene 420. U 400. U 410. U 99-09-2 3-Mitroaniline 1000. U 1000. U 410. U 99-09-2 3-Mitroaniline 1000. U 10000. U 1000. U 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANYMANASA KATAMANASA A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTACABLE IN ANDER  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . โดยสาขาย สาขายสาขายครั้งเรื่องได้เป็นสินทางสาขาย                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.22. <del>7</del> 30.20.20.20.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 77-47-4 Hexachtorocyclopentadiene 420. U 400. U 410. U 2,4,6-Trichtorophenot 420. U 400. U 410. U 95-95-4 2,4,5-Trichtorophenot 1000. U 1000. U 1000. U 91-58-7 2-Chtoronaphthalene 420. U 400. U 410. U 88-74-4 2-Nitroanitine 1000. U 1000. U 1000. U 1000. U 131-11-3 Dimethyl phthalate 420. U 400. U 410. U 208-96-8 666-20-2 2,6-Dinitrototuene 420. U 400. U 410. U 99-09-2 3-Nitroanitine 1000. U 1000. U 1000. U 1000. U 1000. U 99-09-2 3-Nitroanitine 1000. U 410.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | man and the second of the seco |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Andreas and decision of the stricture condu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . x 00 <u>. x</u> 0000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 88-06-2 2,4,6-Trichlorophenol 420. U 400. U 410. U 95-95-4 2,4,5-Trichlorophenol 1000. U 1000. U 1000. U 1000. U 91-58-7 2-Chloronaphthalene 420. U 400. U 410. U 88-74-4 2-Nitroaniline 1000. U 1000. U 1000. U 1000. U 131-11-3 Dimethyl phthalate 420. U 400. U 410. U 208-96-8 Acenaphthylene 420. U 43. J 45. J 466-20-2 2,6-Dinitrotoluene 420. U 400. U 410. U 99-09-2 3-Nitroaniline 1000. U 1000. U 1000. U 1000. U 1000. U 51-28-5 2,4-Dinitrophenol 1000. U |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 🖠 - 0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ananii aadadaan ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ร โดยตอบสด เดิม ของจอด์จด์จด์จดีจดีจดีจดีจดีจดี                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are extended to the contract of the contract o |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 95-95-4 2,4,5-Tricklorophenol 1000. U 1000. U 1000. U 1000. U 91-58-7 2-Chloronaphthalene 420. U 400. U 410. U 88-74-4 2-Nitrosniline 1000. U 1000. U 1000. U 1000. U 131-11-3 Dimethyl phthalate 420. U 400. U 410. U 208-96-8 Acenaphthylene 420. U 43. J 45. J 606-20-2 2,6-Dinitrotoluene 420. U 400. U 410. U 99-09-2 3-Nitrosniline 1000. U 1000. U 1000. U 1000. U 99-09-2 3-Nitrosniline 1000. U 10000. U 1000. U 1000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second management as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | FO 1 15 6 1 1990 SERVINGS SERVINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 91-58-7 2-Chloronaphthalene 420. U 400. U 410. U 588-74-4 2-Nitroaniline 1000. U 1000. U 1000. U 1000. U 131-11-3 Dimethyl phthalate 420. U 400. U 410. U 208-96-8 Acenaphthylene 420. U 43. J 45. J 45. J 45. J 45. J 406-20-2 2,6-Dinitrotoluene 420. U 400. U 410. U 99-09-2 3-Nitroaniline 1000. U 1000. U 1000. U 1000. U 1000. U 51-28-5 2,6-Dinitrophenol 1000. U 10000. U 1000. U 10000. U 10000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOT TAKEN AMERICAN TO A SECUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | <ul> <li>And the second of the second of</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 88-74-4 2-Nitrosmiline 1000. U 1000. U 1000. U 1000. U 131-11-3 Dimethyl phthalate 420. U 400. U 410. U 208-96-8 Acenaphthylene 420. U 43. J 45. J 45. J 406-20-2 2,6-Dinitrotoluene 420. U 400. U 410. U 99-09-2 3-Nitrosmiline 1000. U 1000. U 1000. U 1000. U 1000. U 51-28-5 2,6-Dinitrophenol 1000. U 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTRACTOR STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | <ul> <li>Complete the second control of the second control of</li></ul>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e contrata forme destroy in recognition con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 131-11-3   Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARTICIPATE A PRODUCTION OF THE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maria de la como    | energy areas assessment to be to be a con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONTRACTOR OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x เดอก ของของอนเลของ ครั้งก่อยังเรียบของแอง                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a introduction of the con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 208-96-8 Acenaphthylene 420. U 43. J 45. J 606-20-2 2,6-Dinitrotoluene 420. U 400. U 410. U 99-09-2 3-Mitroaniline 1000. U 1000. U 1000. U 83-32-9 Acenaphthene 420. U 300. J 410. U 51-28-5 2,6-Dinitrophenol 1000. U 1000. U 1000. U 100-02-7 4-Nitrophenol 1000. U 1000. U 1000. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | transcrammannament of the relation from the contract of the co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 606-20-2 2,6-Dinitrotoluene 420. U 400. U 410. U 99-09-2 3-Nitroeniline 1000. U 1000. U 1000. U 1000. U 1000. U 51-28-5 2,4-Dinitrophenol 1000. U 10000. U 10000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CORRESPONDED AND ADMINISTRAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSSS AND CONTRA     | ข้องเกราะสาราสาราสาราสาราสาราสาราสาราสาราสาราส                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>- 1500000000000000000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s <b>(</b> no concesso sacente c <del>de (</del> 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and a Company of the Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 99-09-2 3-Nitroaniline 1000. U 1000. U 1000. U 1000. U 1000. U 83-32-9 Acenaphthene 420. U 300. J 410. U 51-28-5 2,4-Dinitrophenol 1000. U 1000. U 1000. U 1000. U 1000. U 1000. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second of th | right draw for each |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | errando de contratadas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Section of the control of the control</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | ka di remaggigasi si transladan padaegudat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| 83-32-9 Acenaphthene 420. U 300. J 410. U<br>51-28-5 2,4-Dinitrophenol 1000. U 1000. U 1000. U<br>100-02-7 4-Nitrophenol 1000. U 1000. U 1000. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Tarressee)         | <b>,</b> 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>, 1</b> 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | waxaaaaaaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 51-28-5 2,4-Dinitrophenol 1000. U 1000. U 1000. U 1000. U 1000. U 1000. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-2004-1900-1900-1900-1900-1900-1900-1900-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | annonne en          | Control of the contro       | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5050000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Potrako, professión samanni (h. 1979).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |
| 100-02-7 4-Nitrophenol 1000. U 1000. U 1000. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE RESERVE OF THE CONTRACTOR OF THE PARTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | constitution and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROL OF THE PROPERTY OF THE | ·************       | E-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | ja regeorge processom tom. (1994–190)<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Berlier extension of assurable by parasita |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Accommodification accommod</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONTRACT CONSTRUCTION OF A ARACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95000 3000000       | 240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 8 Time: 15:23

| SUB46-SVDA                              | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | 027-S-0001-01<br>027SSB1001<br>143759<br>027SSB1001<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg |          | 027-S-0002-0<br>027SSB1101<br>143760<br>027SSB1101<br>03/06/96<br>03/11/96<br>03/12/96<br>Soil<br>ug/Kg | <b>)1</b>                               | 027-s-0005-0<br>027ssB1201<br>143761<br>027ssB1201<br>03/06/96<br>03/11/96<br>03/12/96<br>Sail<br>ug/Kg | 11  |                                                     |                                                                                                                |                                           |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| CAS #                                   | Parameter                                                                                          | 1717                                                                                                     | VAL      | 1717                                                                                                    | VAL                                     | 1717                                                                                                    | VAL |                                                     |                                                                                                                |                                           |
| 121-14-2                                | 2,4-Dinitrotoluene                                                                                 | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                | 5 00.00.00.00.00.00.00.00.00.00.00.00.00. |
| 84-66-2                                 | Diethylphthalate                                                                                   | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
| 7005-72-3                               | 4-Chlorophenylphenylether                                                                          | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   | 22000000000000000000000000000000000000              |                                                                                                                |                                           |
| 86-73-7                                 | Fluorene                                                                                           | 420.                                                                                                     | U        | 380.                                                                                                    | J                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
|                                         | 4-Nitroaniline                                                                                     | 1000.                                                                                                    | U        | 1000.                                                                                                   | U                                       | 1000.                                                                                                   | U   |                                                     |                                                                                                                |                                           |
|                                         | 2-Methyl-4,6-Dinitrophenol                                                                         | 1000.                                                                                                    | U        | 1000.                                                                                                   | U                                       | 1000.                                                                                                   | U   |                                                     |                                                                                                                |                                           |
|                                         | N-Nitrosodiphenylamine                                                                             | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   |                                                     | <b>.</b>                                                                                                       |                                           |
|                                         | 4-Bromophenyl-phenylether                                                                          | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
|                                         | Hexach Lorobenzene                                                                                 | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   | vas an exercence of a continue acceptable           |                                                                                                                |                                           |
| 87-86-5                                 | Pentachlorophenol                                                                                  | 1000.                                                                                                    | U        | 1000.                                                                                                   | U                                       | 1000.                                                                                                   | U   |                                                     |                                                                                                                |                                           |
| variante en el estat de la constantino  | Phenanthrene                                                                                       | 420.                                                                                                     | <b>U</b> | 3000.                                                                                                   | 55555555555556456446                    | 360.                                                                                                    | J   | 0.2000000000000000000000000000000000000             |                                                                                                                |                                           |
|                                         | Anthracene                                                                                         | 420.                                                                                                     | U        | 640.                                                                                                    |                                         | 94.                                                                                                     |     |                                                     |                                                                                                                |                                           |
| AND | Carbazole                                                                                          | 420.                                                                                                     | U        | 600.                                                                                                    | 53000000000000000                       | 40.                                                                                                     | J   |                                                     |                                                                                                                |                                           |
|                                         | Di-n-butylphthalate                                                                                | 420.                                                                                                     | ป        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
|                                         | Fluoranthene                                                                                       | 79.                                                                                                      | J        | 2900.                                                                                                   |                                         | 630.                                                                                                    |     |                                                     |                                                                                                                |                                           |
| 129-00-0                                |                                                                                                    | 79.                                                                                                      | J        | 2400.                                                                                                   |                                         | 560.                                                                                                    |     |                                                     |                                                                                                                |                                           |
|                                         | Butylbenzylphthalate                                                                               | 420.                                                                                                     | U        | 400.                                                                                                    | <b>U</b>                                | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
|                                         | 3,31-Dichlorobenzidine                                                                             | 420.                                                                                                     | IJ       | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
|                                         | Benzo(a)anthracene                                                                                 | 41.                                                                                                      | J        | 1400.                                                                                                   | 50000000000000000000000000000000000000  | 320.                                                                                                    | J   |                                                     |                                                                                                                |                                           |
| 218-01-9                                |                                                                                                    | 50.                                                                                                      | J        | 1300.                                                                                                   |                                         | 310.                                                                                                    | J   |                                                     |                                                                                                                |                                           |
|                                         | bis(2-Ethylhexyl)phthalate (BEHP)                                                                  | 420.                                                                                                     | U        | 400.                                                                                                    | U                                       | 410.                                                                                                    | U   | ::::::::::::::::::::::::::::::::::::::              |                                                                                                                |                                           |
|                                         | Di-n-octyl phthalate                                                                               | 420.                                                                                                     | U        | 400.                                                                                                    | u                                       | 410.                                                                                                    | U   |                                                     |                                                                                                                |                                           |
|                                         | Benzo(b)fluoranthene                                                                               | 50.                                                                                                      | J        | 1200.                                                                                                   | 160000000000000000000000000000000000000 | 330.                                                                                                    | J   | C 25 - 14 4 6 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 | 00.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 |                                           |
|                                         | Benzo(k)fluorenthene                                                                               | 50.                                                                                                      | J        | 890.                                                                                                    |                                         | 280.                                                                                                    | J   |                                                     |                                                                                                                |                                           |
|                                         | Benzo(a)pyrene                                                                                     | 51.                                                                                                      | J        | 1100.                                                                                                   | 5655868588888888                        | 290.                                                                                                    | J   |                                                     |                                                                                                                |                                           |
| 193-39-5                                | Indeno(1,2,3-cd)pyrene                                                                             | 420.                                                                                                     | U        | 520.                                                                                                    |                                         | 140.                                                                                                    | J   |                                                     |                                                                                                                |                                           |
| 53-70-3                                 | Dibenz(a,h)anthracene                                                                              | 420.                                                                                                     | U        | 230.                                                                                                    | J                                       | 43.                                                                                                     | J   | va                                                  | ***************************************                                                                        |                                           |
| 191-24-2                                | Benzo(g,h,i)perylene                                                                               | 41.                                                                                                      | J        | 530.                                                                                                    |                                         | 160.                                                                                                    | J   |                                                     |                                                                                                                | 1                                         |
|                                         |                                                                                                    |                                                                                                          |          |                                                                                                         |                                         |                                                                                                         |     |                                                     |                                                                                                                |                                           |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 27

Page: 9 Time: 15:23

| SUB46-VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE AMALYZED> MATRIX> UMITS> |            | 12  | 027-H-0005-027H000545<br>124876<br>027H000545<br>06/08/95<br>06/14/95<br>Water<br>UG/L | 45     | 027-C-0008-0<br>027C000806<br>124858<br>027C000806<br>06/08/95<br>06/13/95<br>soil<br>UG/KG | 06       | 027-c-0008-12<br>027c000812<br>124877<br>027c000812<br>06/08/95<br>06/12/95<br>Soil<br>UG/KG |        | 027-H-0<br>027H000<br>124882<br>027H000<br>06/08/5<br>06/13/5<br>Water<br>UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )944<br>)5     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------|-----|----------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| CAS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter                                                                                         | 1446       | VAL | 1446                                                                                   | VAL    | 1446                                                                                        | VAL      | 1447                                                                                         | VAL    | 1447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VAL            |  |
| A CONTRACTOR OF THE STATE OF TH | Chloromethane                                                                                     | 12.        | U   | 10.                                                                                    | U      | 12.                                                                                         | υJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromomethane                                                                                      | 12.        | U   | 10.                                                                                    | U      | 12.                                                                                         | uJ       | 12.                                                                                          | U      | A CONTRACTOR OF THE CONTRACTOR | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vinyl chloride                                                                                    | 12.        |     | 10.                                                                                    | U      | 12.                                                                                         | IJ       | 12.                                                                                          | U      | la la colora de describir de la colorida del colorida del colorida de la colorida del colorida de la colorida del colorida de la colorida de la colorida de la colorida de la colorida del  | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloroethane                                                                                      | 12.        | U   | 10.                                                                                    | U      | 12.                                                                                         | UJ.      | 12.                                                                                          | U      | 0.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methylene chloride                                                                                | 2.         | J   | 10.                                                                                    | IJ     | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. UJ         |  |
| 67-64-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   | 12.        | u   | 7.                                                                                     | J      | 12.                                                                                         | UJ.      | 12.                                                                                          | U<br>U |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon disulfide                                                                                  | 12.        | U   | 10.                                                                                    | U      | 12.                                                                                         | IJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. J<br>10. U  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethene                                                                                | 12.        | U   | 10.                                                                                    | U<br>U | 12.                                                                                         | UJ<br>UJ | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U<br>10. U |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethane                                                                                | 12.        | U   | 10.<br>10.                                                                             | U      | 12.                                                                                         | ni<br>ni | 12.                                                                                          | น้ำ    | tal to the second of the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichloroethene (total)<br>Chloroform                                                          | 12.<br>12. | U   | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T,2-Dichloroethane                                                                                | 12.        | Ü   | 10.                                                                                    | Ü      | 12.                                                                                         | บม       | 12,                                                                                          | Ü      | o coccesto cuado um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Butanone (MEK)                                                                                  | 12.        | U   | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      | A. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,1-Trichloroethane                                                                             | 12.        | ย์ง | 10.                                                                                    | Ü      | 12.                                                                                         | u        | 12.                                                                                          | Ü      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon tetrachloride                                                                              | 12.        | UJ  | 10.                                                                                    | UJ     | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromodichloromethane                                                                              | 12.        | นม  | 10.                                                                                    | Ü      | 12.                                                                                         | ŭ        | 12.                                                                                          | ŭ      | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichloropropane                                                                               | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cis-1,3-Dichtoropropene                                                                           | 12.        | บม  | 10.                                                                                    | Ü      | 12.                                                                                         | บัง      | 12.                                                                                          | Ū      | M. ANNOCCOUGGOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichloroethene                                                                                   | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | u      | republication of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dibromochloromethane                                                                              | 12.        | บง  | 10.                                                                                    | Ü      | 12.                                                                                         | U.J      | 12.                                                                                          | Ü      | and the first and the first of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,2-Trichloroethane                                                                             | 12.        | UJ  | 10.                                                                                    | Ū      | 12.                                                                                         | IJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
| 71-43-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   | 12.        | เม  | 10.                                                                                    | Ü      | 12.                                                                                         | UJ       | 12.                                                                                          | Ū      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,3-Dichloropropene                                                                         | 12.        | LJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromoform                                                                                         | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Methyl-2-Pentanone (MIBK)                                                                       | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Hexanone                                                                                        | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | uı       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tetrachloroethene                                                                                 | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,2,2-Tetrachloroethane                                                                         | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ .     | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
| 108-88-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   | 12.        | UJ  | 1.                                                                                     | J      | 12.                                                                                         | UJ       | 12.                                                                                          | U      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. U          |  |
| 108-90-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorobenzene                                                                                     | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | uj       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
| 100-41-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethylbenzene                                                                                      | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | IJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
| 100-42-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xylene (Total)                                                                                    | 12.        | UJ  | 10.                                                                                    | U      | 12.                                                                                         | UJ       | 12.                                                                                          | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. U          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |            |     |                                                                                        |        |                                                                                             |          |                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |

# **SWMU 62**

#### DATA QUALIFICATION SUMMARY

NET, Inc. - 1411 Organics

SAMPLES:

015C005007, 015C019017, 015C020007, 021C000201, 021C000201MS,

021C000201MSD, 021H000202, 021H001017, 021C003010, 021H003048, 062C002020,

062C005020, 062H005041, 062C006020

#### **VOLATILE ORGANICS**

I.) Holding Times:

All Holding Time criteria were met. No action was required.

II.) GC/MS Tuning:

All GC/MS Tuning criteria were met. No action was necessary.

III.) Calibration:

Initial Calibration:

All Initial Calibration criteria were met. No action was required.

Continuing Calibration:

The Percent Differences (%D's) of bromomethane (31.4%) and chloroethane (40.6%) exceeded the 25% QC limit for the continuing calibration run on 6/01/95 at 13:47 on instrument HP5970H. The non-detect results for these compounds in associated sample 021C003010 were flagged as estimated (UJ).

The Percent Differences (%D's) of the following compounds exceeded the 25% QC limit for the continuing calibration run on 6/01/95 at 11:36 on instrument HP5970K:

| bromomethane | 25.4% |
|--------------|-------|
| 2-butanone   | 27.6% |
| 2-hexanone   | 26.4% |

The results for these compounds in associated sample 021H003048, which consisted entirely of non-detects, were flagged as estimated (UJ).

The Percent Differences (%D's) of dibromochloromethane (26.1%) and 1,1,2-trichloroethane (26.0%) exceeded the 25% QC limit for the continuing calibration run on 5/26/95 at 10:03 on instrument HP5970L. The results for these compounds in associated samples 015C005007, 015C020007, 015C019017, 062C006020, 062C005020, 062C002020 and 021C000201, which consisted entirely of non-detects, were flagged as estimated (UJ).

#### IV.) Blanks:

Method Blanks:

Acetone and 2-hexanone were detected at 7.0 ug/kg and 3.0 ug/kg, respectively, in soil method blank VBLK052695L. The positive results for acetone in associated samples 015C005007, 015C020007, 015C019017, 062C006020, 062C005020, 062C002020 and 021C000201 less than 10X the blank amount were flagged as undetected (U) with the detection limit being raised to the level of contamination in each sample. There were no positive detections for 2-hexanone in the associated samples. No further action was necessary.

Acetone and xylene were detected at 2.0 ug/L and 1.0 ug/L, respectively, in water blank VBLK060195H. The result for acetone in associated sample 021H003048 was greater than 10X the blank amount, so no action was necessary. The result for xylene in the associated sample was a non-detect, so no action was required.

#### TIC's:

There were no TIC's reported in the blanks for this SDG. No action was required.

V.) Surrogate Recoveries:

All Surrogate Recovery criteria were met. No action was required.

VI.) Matrix Spike/Matrix Spike Duplicate (MS/MSD):

All MS / MSD criteria were met. No action was required.

VII.) Field Duplicates:

The field duplicates for samples 015C005007, 015C019017, 015C020007, 021C000201, 021H000202, 021H001017, 021C003010, 021H003048, 062C002020, 062C005020, 062C006020 and 062H005041 were not analyzed in this SDG. No action was required.

VIII.) Internal Standards Performance:

All Internal Standards Performance criteria were met. No action was required.

IX.) TCL Compound Identification:

All TCL criteria were met, so no action was necessary.

X.) Compound Quantitation and Reported Contract Required Quantitation Limits (CRQL's):

All CRQL criteria were met. No action was required.

XI.) Tentatively Identified Compounds (TIC's):

All TIC criteria were met, so no action was taken.

XII.) System Performance:

All criteria were met, so no action was necessary.

XIII.) Overall Assessment of Data/General:

All laboratory data were acceptable with qualification.

#### DATA ASSESSMENT NARRATIVE

#### SEMIVOLATILE ORGANICS

#### General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the CLP OLM01.8 Method; the National Functional Guidelines for Organic Data Validation, June 1991, and DQO Level III requirements. All comments made within this report should be considered when examining the analytical results. Please refer the specific findings found in each category to the Summary of Data Qualification table.

#### SDG # 1695

A validation was performed on the Semivolatile Data from SDG 1695. The data was evaluated based on the following parameters:

- \* Data Completeness
- \* Holding Times
- GC/MS Tuning
  - Calibration
- Blanks
- \* Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicates
- \* Field Duplicates
- \* Internal Standard Performance
- \* Compound Identification
- Compound Quantitation

#### **Continuing Calibrations**

Qualifications were required because the continuing calibration %Ds were not all within the 25% difference criteria.

<sup>\* -</sup> All criteria were met for this parameter.

# DATA ASSESSMENT NARRATIVE SEMIVOLATILE ANALYSIS

#### **PAGE - 2**

#### Continuing Calibrations, continued

#### **Specific Findings**

The continuing calibration standard, J487 contained compounds with %Ds greater than 50% but less than 90%. For the samples and non-compliant compounds listed below, the positive results are qualified as estimated, J, and the non-detect results are qualified as estimated, UJ.

062S000701 4-chloroaniline (60.2%) 062S000801 N-nitrosodiphenylamine (67.2%) 062S000901

#### **System Performance and Overall Assessment**

Overall performance was acceptable. The data reviewer estimates that 5% of data required qualifications.

# **GLOSSARY OF DATA QUALIFIERS**

#### **QUALIFICATION CODES**

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

 $\mathbf{R}$  = Result is rejected and unusable

**D** = Result value is based on dilution analysis

#### METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample

CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is

reported.

U = The sample result for the blank contaminant is greater than the sample

CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte

value reported.

No Action = The sample result for the blank contaminant is greater than the sample

CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank

qualifiers.

# SUMMARY OF DATA QUALIFICATIONS

| IPLE ID                  | ANALYTE ID                                | $\mathbf{DL}$ | QL   |  |
|--------------------------|-------------------------------------------|---------------|------|--|
| ∂62S000701<br>062S000801 | 4-chloroaniline<br>N-nitrosodiphenylamine | +/-           | J/UJ |  |
| 062S000901               |                                           |               |      |  |

- \* DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm
  - + in the DL column denotes a positive result
  - in the DL column denotes a non detect result

# DATA ASSESSMENT NARRATIVE

#### CHLORINATED PESTICIDES/PCBs

#### General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC performance, and calibration results. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the SW-846 Method 8080; the National Functional Guidelines for Organic Data Validation, June 1991, and DQO Level III requirements. All comments made within this report should be considered when examining the analytical results. Please refer the specific findings found in each category to the Summary of Data Qualification table.

#### SDG # 1695

A validation was performed on the Pesticide/PCB Data from SDG 1591. The data was evaluated based on the following parameters:

- Data Completeness
- Holding Times
- \* Calibration
- \* Blanks
- \* Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicates
- Field Duplicates
  - Compound Identification/Quantitation

#### **Compound Quantitation**

Some results were reported with P flags to indicate that column quantitation %Ds were greater than 25%.

### **Specific Finding**

All positive results reported with P flags are qualified as estiamted, J, due to column quantitation %Ds greater than 25%.

#### System Performance and Overall Assessment

Overall performance was acceptable. The data reviewer estimates that 5% of data required qualifications/rejections.

<sup>\* -</sup> All criteria were met for this parameter.

# **GLOSSARY OF DATA QUALIFIERS**

#### **QUALIFICATION CODES**

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

 $\mathbf{R}$  = Result is rejected and unusable

D = Result value is based on dilution analysis

#### METHOD BLANK QUALIFICATION CODES

**CRQL** = The sample result for the blank contaminant is less than the sample

CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is

reported.

U = The sample result for the blank contaminant is greater than the sample

CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte

value reported.

No Action = The sample result for the blank contaminant is greater than the sample

CRQL and is greater than 10X the method blank value. The sample

result for the blank contaminant is not qualified with any blank

qualifiers.

# SUMMARY OF DATA QUALIFICATIONS

 $\mathbf{Q}\mathbf{L}$ **ANALYTE ID** DL SAMPLE ID All P flagged J All +

- DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

  - in the DL column denotes a non detect result

### DATA ASSESSMENT NARRATIVE METALS

#### General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, matrix spike and LCS recoveries, matrix duplicates and calibration results. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the CLP ILM03.0 Method; the Functional Guidelines for Inorganic Data Validation, February 1994, and DQO Level III requirements. All comments made within this report should be considered when examining the analytical results. Please refer the specific findings found in each category to the Summary of Data Qualification table.

#### SDG # 1695

A validation was performed on the Metals Data from SDG 1695. The data was evaluated based on the following parameters.

- \* Data Completeness
- \* Holding Times
- \* Calibrations
- \* Blanks
- \* Interferences
  - Matrix Spike Recovery
- \* Matrix Duplicates
- \* Field Duplicates
- \* Laboratory Control Samples
- \* Serial Dilutions
  - MSAs

### Matrix Spike Recovery

#### Specific Finding

The Matrix Spike recoveries for soils for Antimony (45%) and Silver (66%) were below the lower control limits (<75%) but >30%. All positive and non-detect results are qualified as estimated, "J" or "UJ".

<sup>\* -</sup> All criteria were met for this parameter.

### Laboratory Duplicate Analysis

### Specific Finding

The duplicate analysis for Silver was less than 2 times the CRDL. No qualification is necessary.

#### **MSAs**

#### Specific Finding

The post digestion spike recovery for GFAA was above the upper control limits (>115%). All positive results for the listed samples below are qualified as estimated, "J".

| Element  | Sample IDs | % recoveries | <u>Action</u> |
|----------|------------|--------------|---------------|
| Thallium | 062S701    | 116          | no impact     |
| Thallium | 062S901    | 116          | no impact     |

### Specific Finding

All sample results left with a "B" qualifier after all other qualifications, will be qualified with a "J" qualifier in place of the "B" per Ensafe's request.

### SUMMARY OF DATA QUALIFICATIONS

| Sample ID        | Analyte      | DL  | QL   |
|------------------|--------------|-----|------|
| all soil samples | Sb and Ag.   | +/U | J/UJ |
| All "B" results  | all analytes | В   | J    |

### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62

Page: 1 Time: 15:25

| APX9-RETAL                                                                                                                                                              | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | 0625000701<br>1426085<br>0625000701<br>Soil                                   | 1      | 062-\$-0008-0<br>062\$000801<br>142609\$<br>062\$000801<br>\$oil<br>MG/KG                                                       | 1       | 062-s-0009-01<br>0628000901<br>142610s<br>0628000901<br>Soil<br>MG/KG                                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CAS # Parameter                                                                                                                                                         |                                                                                    | 1695                                                                          | VAL    | 1695                                                                                                                            | VAL     | 1695 VAL                                                                                                                              |  |  |
| AS Antimony AS Arsenic BA Barium BE Beryllium CD Cadmium CR Chromium CO Copper PB Lead HG Hercury NI Nickel SE Selenium AG Silver TL Thellium V Vanadium ZN Zinc SN Tin |                                                                                    | 7.3 10.5 150. 0.98 4. 8.3 10.5 18.9 11.7 0.12 19.4 0.49 3. 0.73 24.1 59. 20.3 | n<br>n | 7.2<br>10.4<br>113.<br>0.96<br>3.9<br>12.<br>9.7<br>18.9<br>14.1<br>0.12<br>16.4<br>0.48<br>0.72<br>0.72<br>25.4<br>54.<br>22.5 | n1<br>n | 7.3 UJ<br>9.7<br>113.<br>0.97 U<br>2.9<br>8.9<br>8.6 J<br>18.<br>11.1<br>0.12 U<br>16.3<br>0.49 U<br>0.73 UJ<br>0.73 U<br>20.<br>49.7 |  |  |

### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62

Page: 2 Time: 15:25

| SM646-PEST                                                      | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE AMALYZED> MATRIX> UNITS> | 062-s-0007-01<br>062s000701<br>142608<br>062s000701<br>02/13/96<br>02/15/96<br>02/20/96<br>Soil<br>UG/KG | 062-s-0008-01<br>0625000801<br>142609<br>0625000801<br>02/13/96<br>02/15/96<br>02/20/96<br>Soil<br>UG/KG | 062-s-0009-01<br>0625000901<br>142610<br>0625000901<br>02/13/96<br>02/15/96<br>02/20/96<br>\$ail<br>UG/KG |          |                                         |                                                                                                                |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| CAS #                                                           | Parameter                                                                                                         | 1695 VAL                                                                                                 | 1695 VAL                                                                                                 | 1695 VAL                                                                                                  |          |                                         |                                                                                                                |
| 309-00-2                                                        |                                                                                                                   | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         | 0.0000000000000000000000000000000000000                                                                        |
|                                                                 | gemma-BHC (Lindane)                                                                                               | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
| $m_{ext}$ , $m_{ext}$ and $m_{ext}$ and $m_{ext}$ and $m_{ext}$ | alpha-BHC                                                                                                         | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          | **************************************  | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                                         |
| 319-85-7                                                        | beta-BHC                                                                                                          | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
| Anomorphism (a)                                                 | del ta-BHC                                                                                                        | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
|                                                                 | 4,41-DDD                                                                                                          | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     |          |                                         |                                                                                                                |
|                                                                 | 4,41-DDE                                                                                                          | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     |          | 000000000000000000000000000000000000000 | process, escapa jaga, chapa, c personal escapa con contrata de la contrata de la contrata de la contrata de la |
|                                                                 | 4,4'-DDT                                                                                                          | 4.1 U                                                                                                    | 3. J                                                                                                     | 4.1 U                                                                                                     |          |                                         |                                                                                                                |
|                                                                 | Dieldrin                                                                                                          | 4.1 U                                                                                                    | 11.                                                                                                      | 4.1 U                                                                                                     |          |                                         | S                                                                                                              |
| 959-98-8                                                        | Endosulfan I                                                                                                      | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
|                                                                 | Endosulfen II                                                                                                     | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     |          |                                         | 65/15/22:1060.0000000000000000000000000000000000                                                               |
| 1031-07-8                                                       | Endosulfan sulfate                                                                                                | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     |          |                                         |                                                                                                                |
| 72-20-8                                                         |                                                                                                                   | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     |          |                                         | 10                                                                                                             |
|                                                                 | Endrin aldehyde                                                                                                   | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     |          |                                         |                                                                                                                |
|                                                                 | Heptachlor                                                                                                        | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         | 0000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0                                                                       |
|                                                                 | Heptachlor apoxide                                                                                                | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
|                                                                 | Methoxychlor                                                                                                      | 20. U                                                                                                    | 20. U                                                                                                    | 20. U                                                                                                     |          |                                         |                                                                                                                |
| 8001-35-2                                                       | Toxaphene                                                                                                         | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
| 12674-11-2                                                      | Aroclor-1016                                                                                                      | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
| 11104-28-2                                                      | Aroctor-1221                                                                                                      | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     | 1        |                                         |                                                                                                                |
| 11141-16-5                                                      | Aroclor-1232                                                                                                      | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     | <u> </u> |                                         |                                                                                                                |
| 53469-21-9                                                      | Aroctor-1242                                                                                                      | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
| 12672-29-6                                                      | Aroclor-1248                                                                                                      | 41. U                                                                                                    | 40. U                                                                                                    | 41, U                                                                                                     |          |                                         |                                                                                                                |
| 11097-69-1                                                      | Aroctor-1254                                                                                                      | 41. U                                                                                                    | 40, U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
| 11096-82-5                                                      | Aroclor-1260                                                                                                      | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
| 53494-70-5                                                      | Endrin ketone                                                                                                     | 4.1 U                                                                                                    | 4. U                                                                                                     | 4.1 U                                                                                                     | 1        |                                         |                                                                                                                |
| 5103-71-9                                                       | alpha-Chlordane                                                                                                   | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
| 5103-74-2                                                       | gamma-Chlordane                                                                                                   | 2. U                                                                                                     | 2. U                                                                                                     | 2. U                                                                                                      |          |                                         |                                                                                                                |
|                                                                 | Technical Chlordane                                                                                               | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
|                                                                 | Chlordane                                                                                                         | 41. U                                                                                                    | 40. U                                                                                                    | 41. U                                                                                                     |          |                                         |                                                                                                                |
|                                                                 |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                           |          |                                         |                                                                                                                |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62

Page: 3 Time: 15:25

| SW846-SVOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | 062-S-0007-01<br>062S000701<br>142608<br>062S000701<br>02/16/96<br>02/20/96<br>Soil<br>ug/Kg |                     | 062-S-0008-0<br>0625000801<br>142609<br>0625000801<br>02/16/96<br>02/20/96<br>5011<br>ug/Kg | 1             | 062-s-0009-01<br>0625000901<br>142610<br>0625000901<br>02/16/96<br>02/20/96<br>\$011<br>ug/kg |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter                                                                                          | 1695                                                                                         | VAL                 | 1695                                                                                        | VAL           | 1695                                                                                          | VAL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 108-95-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phenol                                                                                             | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 111-44-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bis(2-Chloroethyl)ether                                                                            | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 95-57-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Chlorophenol                                                                                     | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 541-73-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-Dichlorobenzene                                                                                | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 106-46-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,4-Dichlorobenzene                                                                                | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 95-50-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dichtorobenzene                                                                                | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Methylphenol (o-Cresol)                                                                          | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000.00.00.0000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8000-500-6008000 5.00 / 11000 PARTICIPATOR -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 108-60-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,2'-oxybis(1-Chloropropane)                                                                       | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Methylphenol (p-Cresol)                                                                          | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Nitroso-di-n-propylamine                                                                         | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexach Loroethane                                                                                  | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98-95-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nitrobenzene                                                                                       | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 78-59-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I sophorone                                                                                        | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 88-75-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Nitrophenol                                                                                      | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 105-67-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4-Dimethylphenol                                                                                 | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-Dichlorophenol                                                                                 | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2,4-Trichlorobenzene                                                                             | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91-20-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Naphtha Lene                                                                                       | 410.                                                                                         | IJ                  | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chloroaniline                                                                                    | 410.                                                                                         | UJ                  | 400.                                                                                        | UJ            | 410.                                                                                          | UJ  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorobutadiene                                                                                | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bis(2-Chloroethoxy)methane                                                                         | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chloro-3-methylphenol                                                                            | 410.                                                                                         | Ū                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Methylnaphthalene                                                                                | 410.                                                                                         | U                   | 400.                                                                                        | Ū             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorocyclopentadiene                                                                          | 410.                                                                                         | Ū                   | 400.                                                                                        | Ū             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4,6-Trichlorophenol                                                                              | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   | ennen makken nya manan ya makembaha atau atau atau atau atau atau atau a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and a second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4,5-Trichlorophenol                                                                              | 1000                                                                                         | ับ                  | 1000.                                                                                       | ŭ             | 1000.                                                                                         | Ü   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Chloronaphthalene                                                                                | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SUCCESSES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Nitroaniline                                                                                     | 1000.                                                                                        | Ŭ                   | 1000.                                                                                       | Ŭ             | 1000.                                                                                         | ŭ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Annual Control of the | Dimethyl phthalate                                                                                 | 410.                                                                                         | U .                 | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page the Marco for the series (MARCO for the Marco Marco for Marco | A STATE OF THE STA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthylene                                                                                     | 410.                                                                                         | U                   | 400.                                                                                        | Ü             | 410.                                                                                          | บั  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,6-Dinitrotoluene                                                                                 | 410.                                                                                         | U                   | 400.                                                                                        | Ü             | 410.                                                                                          | U   | hitelanning control of the control o | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | econogramación y presión, no contratorno de la 19.00 de 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-Nitroaniline                                                                                     | 1000                                                                                         | Ŭ                   | 1000.                                                                                       | Ü             | 1000                                                                                          | บั  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthene                                                                                       | 410.                                                                                         | U                   | 400.                                                                                        | U             | 410.                                                                                          | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Decree 2000 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200  | contract (00 2000 000) - 200 , 2000 - 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100 , 100  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-Dinitrophenol                                                                                  | 1000.                                                                                        | Ŭ                   | 1000.                                                                                       | <b>ី</b> បី ៈ | 1000.                                                                                         | ŭ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-pinitrophenot<br>4-Nitrophenol                                                                 | 1000.                                                                                        | U                   | 1000.                                                                                       | U             | 1000.                                                                                         | U   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To the state of th | <ul> <li>pontpontpriparite to a non-construct of an incident</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-nitrophenot<br>D <b>ibenzofura</b> n                                                             | 410.                                                                                         | U                   | 400.                                                                                        | Ü             | 410.                                                                                          | ย   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125.04.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n ideixaidigu                                                                                      | 410.                                                                                         | 78 <b>78</b> 555550 | *****                                                                                       |               | 7.104                                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62

Page: 4 Time: 15:25

|                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           |                                          |     | •                                                                                           | SWMU 6 | 0.4                                                                                       |                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----|---------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|-------------------|--|--|
| Su846-SWIA                                                                                                                                                                                                                                              | SUB46-SVOA SAMPLE ID> CRIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE EXTRACTED> DATE EXTRACTED> MATRIX> UNITS>                                                                                                                                                                   |                                          | 1   | 062-s-0008-1<br>0625000801<br>142609<br>0625000801<br>02/16/96<br>02/20/96<br>Soil<br>ug/Kg | 01     | 062-s-0009<br>0625000901<br>142610<br>0625000901<br>02/16/96<br>02/20/96<br>Soil<br>ug/Kg |                   |  |  |
| CAS # Paramete                                                                                                                                                                                                                                          | ir                                                                                                                                                                                                                                                                                        | 1695                                     | VAL | 1695                                                                                        | VAL    | 1695                                                                                      | YAL               |  |  |
| 86-73-7 Fluorem 100-01-6 4-Nitro 534-52-1 2-Methy 86-30-6 N-Nitro 101-55-3 4-Bromo 118-74-1 Hexachlo 85-01-8 Pentach 120-12-7 Anthrac 84-74-2 Di-n-bu 206-44-0 Fluoran 129-00-0 Pyrere 85-68-7 Butylbe 91-94-1 3,31-01 56-55-3 Benzo(a 218-01-9 Chrysen | chthalate cphenylphenylether caniline 1-4,6-Dinitrophenol codiphenylamine chenyl-phenylether crobenzene lorophenol nrene ene le cylphthalate chlorobenzidine canthracene e thylhexyl)phthalate (BEHP) tyl phthalate c)fluoranthene c)fluoranthene c)pyrene 1,2,3-cd)pyrene a,h)anthracene | 410. 410. 410. 410. 1000. 1000. 410. 410 |     | 400. 400. 400. 1000. 1000. 1000. 400. 40                                                    |        | 410. 410. 410. 410. 1000. 1000. 410. 410                                                  | U U U U U U U U U |  |  |

#### NSA MEMPHIS NAS MEMPHIS, RFI, ASSEMBLY C SWMU 62

Page: 5 Time: 15:25

| SUB46-VOA                            | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE AMALYZED> MATRIX> UMITS>               | 062C002020<br>123957<br>062C002020<br>05/23/95<br>05/26/95<br>Soil | 20     | 062-C-0050-<br>062C005020<br>123956<br>062C005020<br>05/23/95<br>05/26/95<br>soil<br>UG/KG | 20                      | 062-H-0050-6<br>062HD05041<br>123959<br>062H005041<br>05/23/95<br>05/27/95<br>Water<br>UG/L | 1      | 062-C-0060-20<br>062C006020<br>123955<br>062C006020<br>05/23/95<br>05/26/95<br>Soft<br>UG/KG |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS # Paremet                        | er                                                                                                              | 1411                                                               | VAL    | 1411                                                                                       | VAL                     | 1411                                                                                        | VAL    | 1411 VAL                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74-87-3 Chlorom                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74-83-9 Bromome                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75-01-4 Vinyl c                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75-00-3 Chioroe                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | Ų                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75-09-2 Methyle                      |                                                                                                                 | 13.                                                                | U      | 2.                                                                                         | <b>ل</b><br>*********** | 1.                                                                                          | J      | 1. J<br>12. U                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67-64-1 Acetone                      |                                                                                                                 | 13.                                                                | U      | 16.                                                                                        | U                       | 9.                                                                                          | J<br>U | 12. U<br>12. U                                                                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75-15-0 Carbon                       | acadalatationale i silabor con conserva con una conserva de la conserva de la conserva de la conserva de la con | 13.<br>13.                                                         | U      | 13.<br>13.                                                                                 | U                       | 10.<br>10.                                                                                  | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75-35-4 1,1-Dic<br>75-34-3 1,1-Dic   |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        | •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | hioroethene (total)                                                                                             | 13.                                                                | Ü      | 13.                                                                                        | Ŭ                       | 10.                                                                                         | Ŭ      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67-66-3 Chlorof                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                | *******************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 107-06-2 1,2-Dic                     |                                                                                                                 | 13.                                                                | Ū      | 13.                                                                                        | ŭ                       | 10.                                                                                         | U      | 12, U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 78-93-3 2-Butan                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71-55-6 1,1,1-1                      | unidadus de la companya de la compa  | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56-23-5 Carbon                       |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 75-27-4 Bromodi                      | chloromethane                                                                                                   | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 78-87-5 1,2-Dic                      | hloropropane                                                                                                    | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10061-01-5 cis-1,3                   | -Dichloropropene                                                                                                | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79-01-6 Trichlo                      | roethene                                                                                                        | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        | 04.00.0000.000.000.000.000.0000.00000.0000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 124-48-1 Dibromo                     |                                                                                                                 | 13.                                                                | W      | 13.                                                                                        | UJ                      | 10.                                                                                         | U      | 12. UJ                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79-00-5 1,1,2-T                      | richloroethane                                                                                                  | 13.                                                                | UJ     | 13.                                                                                        | IJ                      | 10.                                                                                         | U      | 12. UJ                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71-43-2 Benzene                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | ,3-Dichloropropene                                                                                              | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75-25-2 Bromofo                      |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | l-2-Pentanone (MIBK)                                                                                            | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U<br>12. U                                                                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 591-78-6 2-Hexan                     |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 127-18-4 Tetrach                     |                                                                                                                 | 13.<br>13.                                                         | U<br>U | 13.                                                                                        | U                       | 10.                                                                                         | . B    | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | -Tetrachloroethane                                                                                              | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | J      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 108-88-3 Toluene<br>108-90-7 Chiorob |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | Ü      | 12. U                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100-41-4 Ethylbe                     |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | U      | 12. U                                                                                        | A 100 TO 100 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100-41-4 Ethytbe                     |                                                                                                                 | 13.                                                                | ŭ      | 13.                                                                                        | Ü                       | 10.                                                                                         | ับ     | 12. U                                                                                        |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1330-20-7 Xylene                     |                                                                                                                 | 13.                                                                | U      | 13.                                                                                        | U                       | 10.                                                                                         | Ü      | 12. Ū                                                                                        |                                                                                                                | Annual Company of the |
|                                      |                                                                                                                 |                                                                    |        |                                                                                            |                         |                                                                                             |        |                                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                 |                                                                    |        |                                                                                            |                         |                                                                                             |        |                                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### Attachment 2

Miscellaneous Soil Boring and Monitoring Well Logs



| DEPTH (FEET) | SAMPLE 1774<br>SAMPLE<br>DEPTH | BLOWS/5 FT. )RGANIC VAPOI. (ppm) | DESCRIPTION OF SUBSURFACE<br>MATERIALS                                                                                                                                      |
|--------------|--------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | JRFACE -                       |                                  |                                                                                                                                                                             |
|              | э                              | 0                                | 0.0-3.0' CLAYEY SILT, TAN TO TAN<br>AND LIGHT BROWN, FIRM TO STIFF.                                                                                                         |
| 5_           | 3                              | 400                              | 3.0-8.0° CLAYEY SILT, GREYISH BROWN, MOIST, FIRM (WITH STRONG HYDROCARBON ODOR).                                                                                            |
| 10           | æ                              | 2971                             | 8.0-13.0° CLAYEY SILT, GREYISH BROWN, VERY<br>MOIST, SOFT (WITH STRONG HYDROCARBON ODOR).                                                                                   |
| 147          | 3                              |                                  | 13.0-14.0' CLAYEY SILT, GREYISH BROWN, SOFT.  14.0-14.5' CLAYEY SILT, BROWN, STIFF.  14.5-15.4' CLAYEY SILT, GRAYISH BROWN, SOFT.  15.4-16.4' SILTY CLAY, DARK BROWN, FIRM. |
| -<br>20      | 20.5                           |                                  | 18.0-20.5' CLAYEY SILT TO SILTY CLAY, BROWN, MOIST, FIRM.  20.5-23.0' SILTY CLAY, TAN MOTTLED YELLOW TAN, FRW TO STIFF.                                                     |
|              |                                |                                  | DISCONTINUED BORING AT 23.0 FEET.                                                                                                                                           |
| 2 <u>5</u>   |                                |                                  |                                                                                                                                                                             |
| 30           |                                |                                  |                                                                                                                                                                             |
|              | ary of                         |                                  | SOIL BORING B/MW-1                                                                                                                                                          |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B/MW-1 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/11/1994 PROJ. #: CTOOO

DATE: 8/4/1994

SAMPLE LYPE SAMPLE SAMPLE DEPTH BLOWS/5 FT RCANIC VAPOR

# DESCRIPTION OF SUBSURFACE MATERIALS

| ٥       | i vi     |       |                                                                                                                                            |             |
|---------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| s       | URFACE - | Grass |                                                                                                                                            |             |
|         | 0        | 4     | 0.0-10' CLAYEY SILT, TAN WITH CONCRETE FRAGMENTS (FILL). 1.0-3.4' CLAYEY SILT, TAN MOTTLED GREY AND BLACK, STIFF.                          |             |
| 5       | 3.4      | 421   | 3.4-5.8' CLAYEY SILT, GRAYISH BROWN, MOIST, FIRM (WITH HYDROCARBON COOR).                                                                  |             |
|         | 5.8      | 102   | 5.8-8.0' SILTY CLAY, GRAYISH BROWN,<br>MOIST, SOFT (WITH SLIGHT HYDROCARBON<br>ODOR).                                                      |             |
|         | 8        | 275   | 8.0-10.5' CLAYEY SILT, GREYISH BROWN,<br>MOIST, SOFT.                                                                                      |             |
|         | 0.5      | 92    | C.5-15.2' SILTY CLAY, GREYISH BROWN<br>TO TAN MOTTLED GREY, MOIST, SOFT.                                                                   |             |
|         | .3       | 27    |                                                                                                                                            |             |
| 15      | 15.5     | 120   | 15.2-16.0' SILTY CLAY, GREYISH BROWN,<br>VERY MOIST, SOFT.                                                                                 |             |
| 2       | .8       | 234   | 16.0-18.0' SILTY CLAY, DARK BROWN,<br>MOIST, FIRM.<br>18.0-20.5' SILTY CLAY, DARK BROWN,<br>MOIST, FIRM (WITH STRONG HYDROCARBON<br>ODOR). |             |
| 20      | 20.5     | 136   | 20.5-23.0' SILTY CLAY, BROWN, MOIST, FIRM (WITH HYDROCARBON ODOR).                                                                         | . •         |
| 25      |          |       | DISCONTINUED BORING AT 23.0 FEET.                                                                                                          | <del></del> |
| -       |          |       |                                                                                                                                            |             |
| -<br>30 |          |       |                                                                                                                                            |             |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B/MW-2
UST's 304 & 1239
MILLINGTON, TN

DATE INSTALLED: 7/11/1994 PROJ. #: CTOOC

DATE: 8/4/1994

SAMPLE DEPTH

SAMPLE
DEPTH

BLOWS / 5 F1

RGANIC VAPOR

(PPM) DESCRIPTION OF SUBSURFACE MATERIALS SURFACE - Grass ٥ 0.0-3.0° CLAYEY SILT, TAN GRADING TO TAN MOTTLED GREY, SLIGHTLY MOIST, STIFF. 30 3.0-8.0' CLAYEY SILT, GREYISH BROWN, WITH BLACK STAINING, VERY MOIST, SOFT (WITH STRONG HYDROCARBON ODOR). 3 56 . 8 48 İ 8.0-13.0' CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT (WITH STRONG HYDROCARBON COOR). 13.0-18.0' CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT (WITH STRONG HYDROCARBON COOR). . : 3 18.0-20.5' SILTY CLAY, DARK BROWN, MOIST, FIRM TO STIFF (WITH HYDROCARBON ODOR). :8 20.5-23.0' SILTY CLAY, BROWN GRADING TO TAN MOIST, FRM TO STIFF (WITH SLIGHT HYDROCARBON GDOR). 20.5 112

DISCONTINUED BORING AT 23.0 FEET.



30

ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B/MW-3 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTOOD

DATE: 8/4/1994

| SAMPL TYPE SAMPLE                        | DEPTH<br>BLOWS / 5-1-1<br>JRGANIC VAPOR<br>(ppm.) | DESCRIPT 0.                                                                        | N OF SUBSURFICE<br>Aterials |
|------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------|
| SURFACE                                  | - Grass                                           |                                                                                    |                             |
| 5                                        |                                                   | 4.0-6.0 CLAYEY SILT, GREYISH BROMOIST, VERY FIRM TO STIFF (WITH HYDROCARBON ODOR). | OWN.                        |
| 1 <u>d</u>                               |                                                   | 9.0-11.01 CLAYEY SELT, GREYISH BE<br>MOIST, FIRM TO SOFT (WITH HYDRO)              | ROWN, VERY<br>CARBON COOR). |
| 15<br>20<br>25<br>30                     |                                                   | DISCONTINUED BORING AT 11.0 FEET                                                   |                             |
| da d |                                                   | NVIRONMENTAL                                                                       | SOIL EORING B-3A            |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080

UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CT0001

DATE:

8/4/1994

### DESCRIPTION OF SUBSURFACE MATERIALS

| SURFACE - | - Crass |
|-----------|---------|
|-----------|---------|

|     | 0 1         | 9   | 0.0-1.5" CRUSHED LIMESTONE (FILL)                                                                          |
|-----|-------------|-----|------------------------------------------------------------------------------------------------------------|
|     |             |     | 1.5-3.0' CLAYEY SILT, GREYISH BROWN, SLIGHTLY MOIST, STIFF.                                                |
| 5   | 3           | 2   | 3.0-6.0' CLAYEY SILT, GREYISH BROWN,<br>SLIGHTLY MOIST, FIRM (WITH HYDROCARBON<br>ODOR)                    |
|     | 5. <b>5</b> | 9   | 6.0-7.0° CLAYEY SILT, BROWN MOTTLED BEIGE, MOIST, STIFF.                                                   |
|     | 8           | 238 | 7.3-8.0' CLAYEY SILT, GREYISH BROWN MOTTLED GREY, MOIST, FIRM (WITH SLIGHT HYDROCARBON ODOR).              |
| 10  | : 0.5       | .21 | 8.0-13.0° CLAYEY SILT, BROWNISH GREY MOTTLED GREY, VERY MOIST, FIRM (WITH HYDROCARBON DOOR).               |
| 1 4 | :3          | 11  | 13.0-18.0' CLAYEY SILT, BROWNISH GREY<br>MOTTLED GREY, VERY MOIST, FIRM (WITH<br>SLIGHT HYDROCARBON ODOR). |
| -   | 5.5         | 4.8 |                                                                                                            |

DISCONTINUED BORING AT 18.0 FEET.

20|

ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080

SOIL BORING B-4 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CT0008

DATE: 8/4/1994



| DEPTH (FEET) | SAMPLE SAMPLE | BI OWS / 5 1 I<br>)RGANIC VAPOI.<br>(ppm.) |
|--------------|---------------|--------------------------------------------|
| SUF          | RFACE -       | Grass                                      |

# DESCRIPTION OF SUBSURFACE MATERIALS

| _  | JUNIACE - | Grass |                                                                                                             |  |
|----|-----------|-------|-------------------------------------------------------------------------------------------------------------|--|
|    | 0         | 15    | 0.0-2.0° CLAYEY SILT, TAN MOTTLED BROWN. SLIGHTLY MOIST, STIFF (FILL?) 2.0-3.0° SILT, SLIGHTLY CLAYEY, DARK |  |
|    | 3         | 15    | BROWN, FIRM.  3.0-5.0' CLAYEY SILT, DARK BROWN, MOIST, FIRM.                                                |  |
| _  |           |       |                                                                                                             |  |
| 5  | 5         | 4     | 5.0-8.0' CLAYEY SILT, TAN MOTTLED GREY AND DARK BROWN, SLIGHTLY MOIST, STIFF (IN SITU SOIL).                |  |
|    | 8         | 1     | 8.0+13.0 CLAYEY SILT, TAN MOTTLED GREY AND DARK BROWN, MOIST, STIFF.                                        |  |
| 10 |           |       |                                                                                                             |  |
|    |           |       |                                                                                                             |  |
|    | .3        | 4     | LIO 15 ST CLAYEY SUIT TAN MOTTIFD CREY                                                                      |  |
|    |           |       | 13.0-15.5° CLAYEY SILT, TAN MOTTLED GREY GRADING TO BROWN MOTTLED GREY, VERY YOIST, FIRM.                   |  |
| 13 | 15.5      | 214   | 15.5-18.0' SAME AS ABOVE (WITH SLIGHT                                                                       |  |
|    |           |       | HYDROCARBON ODOR).                                                                                          |  |
|    | 1 18      | 229   | 18.0- 20.5' SAME AS ABOVE (WITH SLIGHT HYDROCARBON ODOR).                                                   |  |
| 20 | 20.5      | 0     | 20.5-23.0° CLAYEY SILT TO SILTY CLAY,<br>DARK GREYISH BROWN GRADING TO DARK REDDISH                         |  |
|    |           |       | BROWN, MOIST, STIFF.                                                                                        |  |
|    | 23        | 10    | 23.0-28.0' SILTY CLAY GRADING TO CLAYEY SILT, DARK BROWN GRADING TO BROWN MOTTLED                           |  |
| 25 | , -       |       | TAN, MOIST TO VERY MOIST, STIFF TO FIRM.                                                                    |  |
|    |           |       |                                                                                                             |  |
|    |           |       |                                                                                                             |  |
|    |           |       | DISCONTINUED BORING AT 28.0 FEET.                                                                           |  |
| 30 | 4         |       | •                                                                                                           |  |
|    |           |       |                                                                                                             |  |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-5 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/13/1994 PROJ. #: CTOO

DATE: 8

8/4/1994

SAMPLE TYPE SAMPLE TYPE SAMPLE DEPTE BEPTE BEPTE BECANIC VAPON (ppm)

# DESCRIPTION OF SUBSURFACE MATERIALS

| DE      | SA :                          | BI C |                                                                                                                                       |  |  |  |  |  |  |  |
|---------|-------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| St      | SURFACE - Crusned Limestone . |      |                                                                                                                                       |  |  |  |  |  |  |  |
|         | 0                             | 15   | 0.0-2.5' CLAYEY SILT, BROWN, STIFF                                                                                                    |  |  |  |  |  |  |  |
| 5       | 3                             | 4    | 2.5-3.0' CLAYEY SILT, DARK GREY, MOIST, SOFT.  3.0-6.0' CLAYEY SILT, GREYISH BROWN, MOIST, SOFT.                                      |  |  |  |  |  |  |  |
|         | 5.5                           | 27   | 6.0-8.0' CLAYEY SILT, MOTTLED BROWN. TAN, AND GREY, MOIST, STIFF.                                                                     |  |  |  |  |  |  |  |
| 10      | 8                             | 324  | 8.0-13.0° CLAYEY SILT, BROWN MOTTLED GREY<br>AT TOP 1° GRADING TO GREYISH BROWN MOTTLED<br>GREY, MOIST, SOFT (WITH HYDROCARBON ODOR). |  |  |  |  |  |  |  |
|         | 0.51                          | 3031 | <br>                                                                                                                                  |  |  |  |  |  |  |  |
| 15      | 3                             | 288  | 13.0-18.0' CLAYEY SILT, GREYISH BROWN MOTTLED GREY WITH SOME BLACK STAINING?, WET, SOFT (WITH SLIGHT HYDROCARBON GDOR).               |  |  |  |  |  |  |  |
|         | 45. <b>5</b>                  | 304  |                                                                                                                                       |  |  |  |  |  |  |  |
|         |                               |      | DISCONTINUED BORING AT 18.0 FEET.                                                                                                     |  |  |  |  |  |  |  |
| 201     |                               |      |                                                                                                                                       |  |  |  |  |  |  |  |
| _       |                               |      |                                                                                                                                       |  |  |  |  |  |  |  |
| -<br>25 |                               |      |                                                                                                                                       |  |  |  |  |  |  |  |
| -       |                               |      |                                                                                                                                       |  |  |  |  |  |  |  |
|         |                               |      |                                                                                                                                       |  |  |  |  |  |  |  |
| -<br>30 |                               |      | -                                                                                                                                     |  |  |  |  |  |  |  |
|         |                               |      |                                                                                                                                       |  |  |  |  |  |  |  |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-6 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTOO(

DATE: 8/4/1994

### SAMPLE INTERPRETED SAMPLE DEPTH BEOWS/ 5 FT DRGANIC VAPOR DESCRIPTION OF SUBSURFACE MATERIALS SURFACE - Grass 0.0-40' CLAYEY SILT, TAN TO BROWN. DRY TO SLIGHTLY MOIST, STIFF. 49 4.0-8.0' CLAYEY SILT, BROWN, VERY MOIST, FIRM. 5 8.0-8.5' CLAYEY SILT, TAN TO BROWN, SLIGHTLY MOIST, FIRM, FRIABLE. 8 14 86 8.5-13.0' CLAYEY SILT, GREYISH BROWN, MOTTLED GREY AND TAN, MOIST, FIRM · 0.5 (WITH HYDROCARBON ODOR). ; 3 94 13.0-18.0' SAME AS ABOVE (WITH HYDROCARBON ODOR). 15.**5** 81 18.0-20.5' CLAYEY SILT, GREYISH BROWN, MOTTLED TAN, MOIST, FIRM (WITH SLIGHT HYDROCARBON ODOR). 18 7 20.5-22.0' CLAYEY SILT, GREY, VERY MOIST, FIRM (WITH SLIGHT HYDROCARBON ODOR). 20.5 22.0-23.0' SILTY CLAY, DARK BROWN, MOIST. STIFF (CIL SHEEN ON SAMPLER). 23.0-28.0' CLAYEY SILT, GREYISH BROWN, VERY MOIST, FIRM (WITH TRACE OF STAINING). 23 25.5 1 DISCONTINUED BORING AT 28.0 FEET. 30



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-7 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/14/1994 PROJ. #: CTO00

DATE: 5/4/1994

SAMPLE THE
SAMPLE
DEPTH
BLOWS/5-11
NRGANIC VAPOR DEPTH (FEFT) DESCRIPTION OF SUBSURFACE VATERIALS SURFACE - Crushed Limestone 0 ! 51 | 0.0-0.5' CLAYEY SILT, BROWN, SLIGHTLY MOIST, FIRM. 0.5-3.0' CLAYEY SILT, GREYISH EROWN, SLIGHTLY MOIST, FIRM. 3.0-8.0' CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT GRADING TO CLAYEY SILT, GREY MOTTLED BROWN, STIFF, (WITH SLIGHT HYDRO-3 1 CARBON ODOR). 27 5.5 185 8.0-13.0' CLAYEY SILT, GREYISH BROWN MOTTLED GREY, MOIST, FIRM (WITH HYDROCARBON COOR). 8 10.5i 2391 .3 : 306 13.0-18.01 CLAYEY SILT, GREYISH BROWN MOTTLED GREY, MOIST, FIRM (WITH HYDROCARBON COOR). DISCONTINUED BORING AT 18.0 FEET. 20! 25 30



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-8 UST's 304 & 1239

MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTOOC

DATE: 8/4/1994

SAMPLE THE SAMPLE DEPTH BLOWS/5 FT RGANIC VAPOR DESCRIPTION: OF SUBSURFACE MATERIALS SURFACE - Grass 60 | 0.0-3.0" CLAYEY SILT, TAN TO BROWN. SLIGHTLY MOIST, STIFF, (WITH TRACES OF SUBROUNDED GRAVEL) (FILL). Э 3 16 | 3.0-4.6' CLAYEY SILT TO SILTY CLAY, TAN AND BROWN, VERY MOIST, (WITH TRACES OF GRAVEL) (FILL?). 4.6-8.0' CLAYEY SILT, GREYISH BROWN WITH SOME BLACK STAINING, MOIST, SOFT (WITH SLIGHT HYDROCARBON ODOR). 5 4.6 8 3 8.0-10.11 CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT. 3 10.1-14.71 CLAYEY SILT TO SILTY CLAY, TAN TO BROWN MOTTLED GREY, MOIST, FIRM. 0.1 ٠3 2 14.7-18.0' CLAYEY SILT, DARK BROWN, MOIST, STIFF (WITH TRACES OF FINE WET VERTICAL SEAMS OF GREY SILT)(WITH SLIGHT HYDROCARBON COOR). -4.7 67 DISCONTINUED BORING AT 18.0 FEET. 20 30



ENVIRONMENTAL
ASSESSMENT REPORT
NAS MEMPHIS
CTO-0080

SOIL BORING B-9
UST's 304 & 1239
MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTOO0

DATE: 8/4/1994

### BLOWS/ 5 FT REGANIC VAPOR (PPIN) DESCRIPTION OF SUBSURFACE MATERIALS SURFACE - Grass 0.0-3.0° CLAYEY SILT, BROWN MOTTLED TAN. SLIGHTLY MOIST, STIFF (IN SITU SOIL). 0 20 3 3.0-8.0' CLAYEY SILT, BROWN GRADING TO BROWN MOTTLED GREY, SLIGHTLY MOIST, STIFF, (GREY MOTTLING IS SILT IN BOTTOM 1.5 FEET) (WITH SLIGHT HYDROCARBON ODOR). 5.5 21 8 8.0-13.0° CLAYEY SILT, BROWN MOTTLED BEIGE, GRADING TO SILT, BROWN MOTTLED GREY, STIFF, MOIST (WITH SLIGHT HYDROCARBON ODOR). 9 10.5 191 13.0-18.0' CLAYEY SILT, BROWN MOTTLED BEIGE AND LIGHT GREY, FIRM, VERY MOIST. : 3 9 15.5 13 DISCONTINUED BORING AT 18.0 FEET. 20 25 30



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-10 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTOOC

DATE: 8/4/1994

DEPTH (FEET)
SAMPLE THE
SAMPLE
DEPTH
BLOWS/5 FT
)RGANIC VAPOR

### DESCRIPTION OF SUBSURFACE MATERIALS

| s         | SURFACE -    | Grass |                                                                                                                          |
|-----------|--------------|-------|--------------------------------------------------------------------------------------------------------------------------|
|           | 0            | 40    | 0.0-3.0' CLAYEY SILT, TAN, SLIGHTLY MOIST, STIFF (IN SITU SOIL?).                                                        |
| 5_        | 3            | 31    | 3.0-8.0° CLAYEY SILT, BROWN, SLIGHTLY MOIST, STIFF.                                                                      |
| 10        | . 8          | 25    | 8.0-10.5 CLAYEY SILT, BROWN MOTTLED GREY, VERY MOIST, FIRM.                                                              |
|           | 0.5i         | !5    | 10.5 - 13.0" CLAYEY SILT, GREYISH BROWN MOTTLED GREY (WITH SOME BLACK IN LOWER PORTION), VERY MOIST, FIRM.               |
| 1 6       | .3           | 32    | 13.0-15.5' CLAYEY SILT, TAN MOTTLED CREY,<br>MOIST, FIRM.                                                                |
| ,         | '5. <b>5</b> | 16    | 15.5-18.0' SILTY CLAY BROWNISH GREY GRADING TO BROWN AND GREY TO DARK BROWN, MOIST, FIRM (WITH SLIGHT HYDROCARBON ODOR). |
| 20        |              |       | DISCONTINUED BORING AT 18.0 FEET.                                                                                        |
| <br>      | -            |       |                                                                                                                          |
| <u>25</u> |              |       |                                                                                                                          |
| 1 -1      |              |       |                                                                                                                          |
| <u>30</u> |              |       |                                                                                                                          |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-11 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTOOO

DATE: 8/4/1994

| DEPTH (FEET) | SAMPLE TYPE<br>SAMPLE<br>DEPTH | BLOWS/5 FT.  JRGANIC VAPOR (port) | DESCRIPTI <del>ún</del> of Subsurface<br>Materials                                                                                                                                                                                                   |
|--------------|--------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S            | URFACE -                       | Crass                             |                                                                                                                                                                                                                                                      |
|              | 0                              | 40                                | D.D-3.8' CLAYEY SILT, BROWN MOTTLED<br>BEIGE AND DARK BROWN, SLIGHTLY MOIST,<br>STIFF (FILL?).                                                                                                                                                       |
| 5_           | 3.8                            | 234                               | 3.8-5.8' CLAYEY SILT, GREYISH BROWN WITH<br>BLACK STAINING, VERY MOIST, SOFT (WITH<br>STRONG HYDROCARBON ODOR).                                                                                                                                      |
| 10           | 8                              | 150                               | 8.0-14.5 CLAYEY SILT, GREYISH BROWN WITH<br>BLACK STAINING, VERY MOIST, SOFT (WITH<br>STRONG HYDROCARBON ODOR).                                                                                                                                      |
| 15           | : 3.0                          | 1 37                              | 14.5-14.7' SILT, BROWN, STIFF, DRY. 14.7-14.9' CLAYEY SILT, BROWN WITH BLACK STAINING, WITH TRACES OF ROUNDED GRAVEL, VERY MOIST (WITH TRACES OF OIL AND STRONG HYDROCARBON ODOR). 14.9-16.0' CLAYEY SILT TO SILTY CLAY, SLIGHTLY MOIST, VERY STIFF. |
| 20           | . 18                           | 242                               | 18.0-23.0° CLAYEY SILT, DARK GREYISH BROWN, MOIST, STIFF (WITH STRONG HYDROCARBON CDOR).                                                                                                                                                             |
| 2:           | 23                             | 26¹<br>257                        | MOIST, FRIABLE (WITH HYDROCARBON ODOR).                                                                                                                                                                                                              |
| 30           |                                |                                   | DISCONTINUED BORING AT 28.0 FEET.                                                                                                                                                                                                                    |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-12 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/13/1994 PROJ. #: CTOOC

DATE: 8/4/1994

SAMPLE TYPE SAMPLE TYPE SAMPLE DEPTHE BLOWS/ 5-FT NRGANIC VAPOR (PPPL)

# DESCRIPTION OF SUBSURFACE MATERIALS

| SURFACE - | Grass |
|-----------|-------|
|-----------|-------|

| -  | JURFACE - | Grass |                                                                                                                      |        |
|----|-----------|-------|----------------------------------------------------------------------------------------------------------------------|--------|
|    | 0         |       | 0.0-3.0' CLAYEY SILT, TAN TO BROWN.<br>SLIGHTLY MOIST, FIRM TO STIFF (FILL?)                                         |        |
|    | 3         | 15    | 3.0-8.0° CLAYEY SILT, BROWN MOTTLED TAN, VERY MOIST, SOFT.                                                           |        |
| 5  |           |       |                                                                                                                      |        |
| 1  | 8         | 9     | 8.0-13.0° CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT.                                                              |        |
|    |           |       |                                                                                                                      |        |
| İ  | . 3       | 6     | 13.0-14.0' CLAYEY SILT, BROWN, WET, SOFT.                                                                            |        |
| 1. | 4         | 77    | 14.0-14.5 CLAYEY SILT, GREYISH BROWN WITH BLACK STAINING, WET, SOFT (WITH HYDROCARBON ODOR)                          |        |
|    |           |       | 14.5-18.0' CLAYEY SILT, CREYISH BROWN<br>GRADING TO BROWN, MOIST, FIRM (WITH SLIGHT<br>HYDROCARBON ODOR).            |        |
| 20 | 18        | 49    | 18.0-21.0' CLAYEY SILT, LIGHT BROWN GRADING TO DARK BROWN, MOIST, STIFF.                                             |        |
|    | 20.5      | 3001  | 21.0-23.01 CLAYEY SILT, DARK BROWN, VERY MOIST, FRIABLE (WITH HYDROCARBON COOR).                                     |        |
| 25 | 23        | 327   | 23.0-26.0' CLAYEY SILT, DARK GREYISH<br>BROWN, VERY MOIST, FIRM (WITH TRACES OF<br>OIL AND STRONG HYDROCARBON ODOR). | ·<br>• |
|    | 25.5      | 18    | 26.0-28.0' CLAYEY SILT, BROWN MOTTLED TAN, MOIST, FIRM TO STIFF (WITH SLIGHT HYDROCARBON ODOR).                      |        |
| Γ. |           |       | DISCONTINUED BORING AT 28.0 FEET.                                                                                    |        |
| 30 | )         |       |                                                                                                                      |        |
|    |           |       | •                                                                                                                    |        |
| _  |           |       |                                                                                                                      |        |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080 SOIL BORING B-13 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/12/1994 PROJ. #: CTO00

DATE:

8/4/1994

| <b>DEPTH (FEET)</b> | SAMPLE TYPE<br>SAMPLE<br>DEPTH | BLOWS / 5 FT | (ppm) | DESCRIPTION OF SUBSURFACE<br>MATERIALS                                                  |
|---------------------|--------------------------------|--------------|-------|-----------------------------------------------------------------------------------------|
| $\vdash$            | JRFACE -                       |              |       |                                                                                         |
|                     | 0                              |              | 70    | 0.0-3.0' CLAYEY SILT, BROWN MOTTLED<br>BEIGE, SLIGHTLY MOIST, STIFF.                    |
| 5_                  | . 3                            |              | 64    | 3.0-8.0' CLAYEY SILT, BROWN WITH<br>DARK BROWN STREAKS, MOIST, FIRM.                    |
| 10                  | 8                              | •            | 96    | 8.0-13.0° CLAYEY SILT, GREYISH BROWN,<br>VERY MOIST, SOFT (WITH HYDROCARBON ODOR).      |
| 15                  | 3                              |              | 23    | 13.0-18.0° CLAYEY SILT, BROWN, VERY MOIST, FIRM TO SOFT (WITH SLIGHT HYDROCARBON COOR). |
| 20                  | :                              |              |       | DISCONTINUED BORING AT 18.0 FEET.                                                       |
| -                   |                                |              |       |                                                                                         |
| 2 <u>5</u>          |                                |              |       |                                                                                         |
| -<br>30<br>-        |                                | -            |       |                                                                                         |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO0080 SOIL BORING B-14 UST's 304 & 1239 MILLINGTON, TN

DATE: INSTALLED: 7/13/1994 PROJ. #: CT0001

DATE: 8/4/1994

| SAMPLE 1819 SAMPLE SAMPLE SAMPLE OEPTH | BLOWS/ 5 FT<br>)RGANIC VAPOR<br>(PPM) |
|----------------------------------------|---------------------------------------|
|----------------------------------------|---------------------------------------|

### DESCRIPTION OF SUBSURFACE MATERIALS

| s         | URFACE - | Crass |                                                                                                                                                                  |
|-----------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 3        | 330   | 1.0-3.0' CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT (WITH HYDROCARBON ODOR). HIT TANK AT APPROXIMATE DEPTH OF 6 FEET, OFFSET BORING 3 FEET EAST. SAMPLES BELOW |
| 5_        |          |       | 3 FEET IN DEPTH ARE FROM OFFSET BORING.  3.0-8.0 CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT (WITH STRONG HYDROCARBON ODOR).                                    |
| 10        | 8        | 202   | 8.0-13.0 CLAYEY SILT, GREYISH BROWN, VERY MOIST, SOFT (WITH STRONG HYDROCARBON ODOR).                                                                            |
| 151       | . 13     | 1 36  | :3.0-18.0' CLAYEY SILT, GREYISH BROWN,<br>VERY MOIST, SOFT TO FIRM (WITH TRACES OF<br>CARBONIZED WOOD AND SLIGHT HYDROCARBON ODOR).                              |
|           | 18       | 8     | 18.0-20.5' CLAYEY SILT, LIGHT GREYISH BROWN GRADING TO GREY, MOIST, FIRM.                                                                                        |
| 20        | 20.5     | 3     | 20.5-23.0' SILTY CLAY, DARK GREYISH BROWN<br>GRADING TO DARK BROWN, MOIST, STIFF.                                                                                |
|           | 23       | 2     | 23.0-27.0' CLAYEY SILT, BROWN, VERY MOIST, FIRM TO STIFF                                                                                                         |
| <u>43</u> | 25.5     | 6     | 27.0-28.0' CLAYEY SILT, GREYISH BROWN, VERY MOIST, FIRM.                                                                                                         |
| <br>30    |          |       | DISCONTINUED BORING AT 28.0 FEET.                                                                                                                                |
|           |          |       |                                                                                                                                                                  |



ENVIRONMENTAL ASSESSMENT REPORT NAS MEMPHIS CTO-0080

SOIL BORING B-15 UST's 304 & 1239 MILLINGTON, TN

DATE INSTALLED: 7/13/1994 PROJ. #: CTOOD

DATE: 8/4/1994



| ENSIFE ©                |                                      |          |       |            |           |             | <b>©</b>  |                                                                                                   | Monitoring Well                                                             | 07-           | -MW-1S                |
|-------------------------|--------------------------------------|----------|-------|------------|-----------|-------------|-----------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|-----------------------|
|                         | Environmental & Safety Designs, Inc. |          |       |            |           |             | De        | signs, Inc.                                                                                       |                                                                             |               |                       |
| Pro                     | Project: NAS Memons                  |          |       |            |           |             |           |                                                                                                   | Location Manglon TN SWALK                                                   | 7 - Bu        | ding N-126            |
| Pro                     | Project No.: ACCOM                   |          |       |            |           |             |           |                                                                                                   | Surface Elevation: feet inst                                                |               |                       |
| Sta                     | ried at                              | 106      | an 2- | 07-90      | 5         |             |           |                                                                                                   | TOC Elevation: feet insi                                                    |               |                       |
| Con                     | pleted                               | at a     | 02-0  | 7-95       |           |             |           |                                                                                                   | Depth to Groundwater: feet                                                  |               | Measured              |
| Drie                    | ng Met                               | hort     | Rotas | ~          |           |             |           | ·                                                                                                 | Groundwater Elevation: leet ms/                                             |               |                       |
|                         | ng Com                               |          |       |            | Contra    |             |           |                                                                                                   | Total Depth: 20.0 feet                                                      |               |                       |
|                         | logst:                               |          |       |            |           | ¥           |           |                                                                                                   | Hel Screen: 10 to 20 feet                                                   |               |                       |
| DEPTH<br>INFEET         |                                      | ANATICAL |       | * RECOVERY | (wdd) Cit | GRAPHIC LOG | SOR CLASS | GEOL(                                                                                             | OGIC DESCRIPTION                                                            | ELEV. (11-ma) | WELL DIAGRAM          |
| 5-<br>10-<br>25-<br>35- |                                      |          | 3     | 100        | 8G        | 9           | ML        | Clayey silt, modera<br>Clayey silt, modera<br>brown, mottled pai<br>Clayey silt, light br<br>dry. | rown to reddish brown, stiff, ste brown, stiff. ken from the boring for the |               | 0.01 slot, PVC screen |
| 40-                     |                                      |          |       |            |           |             |           |                                                                                                   |                                                                             |               |                       |

### Monitoring Well 07-MW-IUF Environmental & Safety Designs, Inc. Project: NAS Memoris Location: Mington, TN SWNUNT - Building N-128 Project No.: NO094 Surface Devators feet mal Started at 105 on 2-07-96 TOC Elevation: feet msl Completed at on 2-07-95 Depth to Groundwater: feet Measured Orling Method: Rotasanic Groundwater Elevation: feet msi Driling Company: North Star Driling Total Deoth: 40.0 feet Geologist: Ben Brantley Well Screen: 29 to 39 feet GRAPHOC LOG ANN YTEM SAMPLE SWALEND X RECOVER SOIL CLASS PTD COM GEOLOGIC DESCRIPTION WELL DIAGRAM MFEET ELEY. ( Clayey silt, grayish blue green, moist. 80 86 Clayey silt, moderate brown, medium stiff. 2" 10, Sch. 40 PVC and 8" steel casing Clayey silt, moderate brown to dark yellowish brown, mottled pale yellowish brown. 15 100 86 Clayey silt, light brown to reddish brown, stiff, 20 Clayey silt, moderate brown, stiff. 25 3 100 86 Clayey sand, fine to medium, dark yellowish brown to light brown. 30 0.01 slot, PVC screen 10/20 sand 35 4 95 86

### ENSIFE Monitoring Well 07-MW-1LF Environmental & Safety Designs, Inc. Project: NAS Memoris Location: Hillington, TN SHAW17 - Building N-126 Project No.: NOO94 Surface Elevations feet and Started at 105 on 2-07-95 TOC Devators feet Inst Completed at on 2-07-95 Depth to Groundwater: feet Heasted Orling Method Rolasonic Groundwater Elevation: feet mail Draing Company: North Star Draing Total Depth: 70 feet Geologist Ben Brantley Hell Screen: 59 to 69 feet ANUTTECA. SWALE GRAPHIC LOG X RECOVER SWALEND 50 CO GEOLOGIC DESCRIPTION WELL DIAGRAM 10, Sch. 40 PVC and 8" steel casing 45 Gravelly sand, coarse, grayish orange to yellowish orange. 5 55 90 BG 60 0.01 slot, PVC screen 10/20 send 65-Log information taken from the boring for the 70-Cockfield well at SWMU#7 site t 75-6 87 86 80

# ENSIFE © Environmental & Safety Designs, Inc.

### Monitoring Well 07-MW-IUC

| Project: NAS Memoris              | Location: Milington, TN. Building N-126 |  |  |  |  |
|-----------------------------------|-----------------------------------------|--|--|--|--|
| Project No.: NO094                | Surface Elevation: feet its/            |  |  |  |  |
| Started at 106 on 2-07-96         | TOC Elevation: feet mai                 |  |  |  |  |
| Completed at on 2-07-95           | Depth to Groundwater: feet Measured:    |  |  |  |  |
| Orling Method: Rolasonic          | Groundwater Elevations feet mail        |  |  |  |  |
| Orling Company: North Star Drling | Total Depth: IIO.O feet                 |  |  |  |  |
| Geologst: Ben Brantley            | Well Screen: 97 to 107 feet             |  |  |  |  |

| 060               | <del>~~~~</del> | 301        | 3 a lu                         | -          |                                                                           |             |           | Ma datat or to lar reti                                                                                                                                                                                                     |               |                                                                             |
|-------------------|-----------------|------------|--------------------------------|------------|---------------------------------------------------------------------------|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|
| OBTH<br>NFEET     | LITHOLOGIC      | ANALYTICAL | SAFLEND                        | X PECOVERY | PTD (spm)                                                                 | GRAPHOC LOG | SOR CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                        | B.EV. (II-mal | WELL DIAGRAM                                                                |
| 10-<br>15-<br>20- | $\bigvee$       | ***        | 1 2 3 4 5 6 8 9 10 11 12 13 14 | 80         | 146<br>89.4<br>55<br>9.1<br>6.3<br>2.9<br>24.8<br>12.3<br>0.3<br>86<br>86 | nus         | ME.       | Clayey silt, moderate brown, medium stiff.  Clayey silt, moderate brown to dark yellowish brown, mottled pale yellowish brown.  Clayey silt, light brown to reddish brown, stiff, dry.  Clayey silt, moderate brown, stiff. | 378           | 7" ID, Sch. 40 PVC and 8" steel casing """""""""""""""""""""""""""""""""""" |
| 30-<br>35-        | X               |            | 15<br>16<br>17<br>18<br>19     | 95         | 86<br>86<br>86<br>86<br>86                                                |             | sc        |                                                                                                                                                                                                                             |               |                                                                             |

# EN SUFE ®

### Monitoring Well 07-MW-IUC

| E               | Environmental & Safety Designs, Inc. |                     |                                  |            |                      |             |                                         | signs, Inc.                                                   | 01                                    | 1911 100                                                        |  |  |
|-----------------|--------------------------------------|---------------------|----------------------------------|------------|----------------------|-------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|--|--|
| 1               |                                      | VAS M               | _                                |            |                      | <u> </u>    |                                         |                                                               | Location: Mington, TN. Building N-126 |                                                                 |  |  |
| Pro             | ect N                                | o: NO               | 294                              |            |                      | -           | • • • • • • • • • • • • • • • • • • • • | Surface Elevation: feet insi                                  |                                       |                                                                 |  |  |
|                 |                                      | 105                 |                                  |            | 5                    |             |                                         | TOC Elevators feet mal                                        | <u> </u>                              |                                                                 |  |  |
| Con             | pletec                               | at a                | 12-0                             | 7-95       |                      |             |                                         | Depth to Groundwater: feet                                    |                                       |                                                                 |  |  |
|                 |                                      | thoat i             |                                  |            |                      |             |                                         | Groundwater Elevation: feet in                                | <u>'</u>                              |                                                                 |  |  |
|                 |                                      | pary:               |                                  |            | Onlin                | 9           |                                         | Total Deptit: #0.0 feet                                       |                                       |                                                                 |  |  |
| Geo             | ogst                                 | <i>B</i> en t       | rand                             | <u> </u>   | γ                    |             |                                         | Well Screen: 97 to 107 feet                                   | T                                     | <u> </u>                                                        |  |  |
| DEPTH<br>INFEET | LITHOLOGIC                           | ANLYTICAL<br>SAMPLE | SMALEND                          | X PECONERY | PID (tron)           | GRAPHOC LOG | SOIL CLASS                              | GEOLOGIC DESCRIPTION                                          | ELEV. (N-med                          | HELL DIAGRAM                                                    |  |  |
| 45-             |                                      |                     | 21<br>22<br>23<br>24<br>25<br>26 |            | 86<br>86<br>86<br>86 |             | SC                                      | Gravelly sand, coarse, grayish orange to                      |                                       | #0 PvC and 8" start casing ———————————————————————————————————— |  |  |
| 55-             |                                      |                     | 27                               | 90         | 86                   | 00          |                                         | yellowish orange.                                             |                                       | - Dunio                                                         |  |  |
| 60-             |                                      | •                   | 29<br>30<br>31<br>32             |            | 0.8<br>LO<br>0.8     | 00000000    | ¢<br>GP                                 | •                                                             |                                       | Sch. 40 PVC and 8" steel casing                                 |  |  |
| 65-             |                                      |                     | 33                               |            | 0.8                  | 0           |                                         |                                                               |                                       | - 2" 10, Sch.                                                   |  |  |
|                 | M                                    |                     | 34<br>35                         |            | 0.8<br>B6            | 0           | . —                                     | Sand clayey, fine, pale yellowish orange to                   |                                       |                                                                 |  |  |
| 70-             | $/ \parallel$                        |                     | 36                               |            | 86                   |             |                                         | moderate orange. Sity clayey sand, fine, medium gray to olive |                                       |                                                                 |  |  |
| 75-             |                                      |                     | 37<br>38                         | 87         | 86                   |             | sc                                      | gray, contains marcasite nodules.                             |                                       | miniminiminiminiminiminiminiminiminimin                         |  |  |
|                 | $\bigvee$                            |                     | 39                               | <b>5</b> , | 86                   |             |                                         | Sand, fine, yellowish gray to light gray, lighte at 79.5°.    |                                       |                                                                 |  |  |
| 80              | $\triangle$                          |                     | 40                               |            | 86                   |             |                                         |                                                               |                                       |                                                                 |  |  |

| Environmental & Safety Designs, Inc.                        |                 |       |       |       |    |      |    |                       | Monitoring Well                        | 07-           | MW-IUC                                                                        |  |  |
|-------------------------------------------------------------|-----------------|-------|-------|-------|----|------|----|-----------------------|----------------------------------------|---------------|-------------------------------------------------------------------------------|--|--|
| Pro                                                         | ect: /          | WSM   |       | 3     |    |      |    |                       | Location: Milington, TN Building N-126 |               |                                                                               |  |  |
| Pro                                                         | ect N           | a: NO | 094   |       |    |      | •  |                       | Surface Elevation: feet asi            |               |                                                                               |  |  |
| Sta                                                         | ned a           | 1 106 | on 2- | 07-9  | 5  |      |    |                       | TOC Elevation: feet mal                |               |                                                                               |  |  |
| Сап                                                         | plete           | sat o | n 2-0 | 77-95 |    |      |    |                       | Depth to Groundwater: /eet             |               | Measured                                                                      |  |  |
| Dri                                                         | ng Mel          | hod   | Rotas | anc   |    |      |    |                       | Groundwater Elevation: feet auf        |               |                                                                               |  |  |
| Orling Method: Rotasonic Orling Company: North Star Driling |                 |       |       |       |    |      |    |                       | Total Deptit: IIQO feet                |               |                                                                               |  |  |
| Geologist: Ben Brantley                                     |                 |       |       |       |    |      |    |                       | Well Screen: 97 to ID7 feet            |               |                                                                               |  |  |
| OEPTH<br>INFEET                                             | 2 2 2 2 2 2 2   |       |       |       |    |      |    |                       | SIC DESCRIPTION                        | ELEV. (M-mat) | WELL DIAGRAM                                                                  |  |  |
|                                                             |                 |       | 41    |       | 86 | 33   |    | Sand, fine, measur gr | ray to cave gray,                      |               |                                                                               |  |  |
|                                                             | N /             |       | ] "   |       | 60 | 5.5  |    | Ricaceous.            |                                        |               |                                                                               |  |  |
| 1.                                                          | N /             | İ     | 42    | }     | BG | 0.0  |    |                       |                                        | '             | 9                                                                             |  |  |
|                                                             | IVI             | 1     |       |       |    | 33   | 1  |                       |                                        |               |                                                                               |  |  |
| 85-                                                         | W               | l     | 43    | i     | 86 |      |    | Sand fine Eacht afive | e gray to gray with dusky              |               | T 88 7                                                                        |  |  |
| 1                                                           | V               | ł     | l     | 1     | 1  |      | 1  | brown clay lenses.    | - A-mi to A-mi with CANA               |               | goul                                                                          |  |  |
|                                                             | Y               |       | 44    |       | 86 | (2)  | 1  |                       |                                        |               | 2" ID, Sch. 40 PVC and 8" steel casing —  """"""""""""""""""""""""""""""""""" |  |  |
|                                                             |                 |       |       |       |    | 23.3 |    |                       |                                        |               |                                                                               |  |  |
|                                                             | $1 \Lambda$ :   | ,     | 45    |       | 86 |      |    |                       |                                        |               | 2 8                                                                           |  |  |
| 90-                                                         | $I/\Lambda$     |       |       | ļ     |    |      | i  |                       |                                        |               |                                                                               |  |  |
|                                                             | V V             |       | 46    | 1     | 86 | 34   |    |                       |                                        |               | h. 40 Pr                                                                      |  |  |
|                                                             | / \             |       |       | i     |    | 7.7  | sc |                       |                                        |               | S   4                                                                         |  |  |
| 1                                                           | / V             |       | 47    |       | 86 |      |    |                       |                                        |               | g 🕶                                                                           |  |  |
| ~                                                           |                 |       | 48    |       |    | 7.7  | }  |                       |                                        |               | - I                                                                           |  |  |
| 95-                                                         |                 |       | 10    | 110   | 86 | 777  | ł  |                       |                                        |               |                                                                               |  |  |
|                                                             | K /             |       | 49    |       | BG | 7.7  |    |                       |                                        | }             |                                                                               |  |  |
|                                                             | 1               |       | 70    | ļ     |    |      | i  |                       |                                        |               | T B                                                                           |  |  |
|                                                             | \ /             |       | 50    | ļ     | 86 | 77   | •  | Cama na mbawa bud :   |                                        |               | E   E                                                                         |  |  |
| 100-                                                        | M               |       | **    |       |    |      | Ì  | from 99' to 105'.     | increasing amounts of clay             | ļ             |                                                                               |  |  |
|                                                             | M               |       | 51    | 1     | 86 |      | }  |                       |                                        | 1             | 0.01 stot, PVC scre                                                           |  |  |
|                                                             | V               |       |       | 1     | 1  |      | l  |                       |                                        |               | [] 2                                                                          |  |  |
| 1                                                           | ٨               |       | 53    | 1     | 86 | 22   | ł  |                       |                                        |               |                                                                               |  |  |
|                                                             |                 |       |       |       | 1  |      | 1  |                       |                                        |               |                                                                               |  |  |
| 105-                                                        | $I \setminus I$ |       | 54    | 1     | 86 | iiii |    | Clay wary dueby he    | rown, hard, has olive gray             | 1             | ·   且                                                                         |  |  |
| 1                                                           | / \H            |       |       | Į     |    |      |    | sand lenses.          | 100 W 100 OHE \$ 69                    |               |                                                                               |  |  |
| 1                                                           | / \l            |       | 55    | 1     | 86 |      | CL |                       |                                        | 1             |                                                                               |  |  |
| 1                                                           | / V             |       | 58    |       | 86 |      |    |                       |                                        |               |                                                                               |  |  |
| 110-                                                        |                 |       | 57    | 100   | 88 |      |    |                       |                                        |               |                                                                               |  |  |
| [ ~]                                                        |                 |       | -     | ~~    | 1  |      |    | End of boring at 110" | •                                      | ]             |                                                                               |  |  |
|                                                             |                 |       |       |       | İ  |      |    | _                     |                                        | 1             |                                                                               |  |  |
|                                                             |                 | ŀ     |       | 1     |    | 1    |    |                       |                                        | 1             | 1                                                                             |  |  |
|                                                             | 1               | ļ     |       |       | i  |      |    | •                     |                                        | [             |                                                                               |  |  |
| 115-                                                        |                 | }     |       |       | l  |      |    |                       |                                        |               |                                                                               |  |  |
| ł                                                           | l               |       |       |       | İ  |      |    |                       | •                                      | 1             |                                                                               |  |  |
| 1                                                           | ľ               |       |       |       |    |      |    |                       |                                        |               |                                                                               |  |  |
| 1                                                           | I               |       |       |       |    |      |    |                       |                                        | .             |                                                                               |  |  |
| 1                                                           |                 | ı     |       |       |    |      |    |                       |                                        | 1             |                                                                               |  |  |
| 150-                                                        |                 | .     |       |       |    |      |    |                       |                                        |               | j                                                                             |  |  |

### Monitoring Well 07-MW-2S Environmental & Safety Designs, Inc. Project: NAS Memoris Location: Hillington, TN SHMUNT - Building N-28 Project No.: NOO94 Surface Elevation: feet insi Started at on 2-07-95 TOC Devation: feet inst Completed at on 2-07-95 Measured Depth to Groundwater: feet Drilling Method: Rotasonic Groundwater Elevation: feet and Driling Company: North Star Driling Total Depth: 20.0 feet Geologist: Ben Brantley Well Screen: to feet ANALYTICAL SAMPLE QASS X RECOVER 8 GEOLOGIC DESCRIPTION WELL DIAGRAM DEPTH INFEET EP. 42" 10, Sch. 40 PVCM Clayey silt, grayish green with dark yellow ١ 90 86 0.01 slot, PVC screen Clayey silt, dark yellowish brown to light olive 2 100 86 Clayey silt, dark yellowish orange to light brown, medium stiff, dry. 20 3 100 86 Clayey sit, moderate brown with organics. End of boring at 20'. 25. 30-35-40

| Enviro                        |                                            | ntal 8     |                                                       |             | De       | signs, Inc.                                                                           | Monitoring Well                                                                        | 07-          | MW-2UC                                 |  |
|-------------------------------|--------------------------------------------|------------|-------------------------------------------------------|-------------|----------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|----------------------------------------|--|
| Project: NA                   | AS Memo                                    | 2715       |                                                       |             |          |                                                                                       | Location: Milington, TN SHAUBT - Building N-126                                        |              |                                        |  |
| Project No.                   |                                            |            |                                                       |             |          |                                                                                       | Surface Elevation: feet mal                                                            |              |                                        |  |
| Started at                    |                                            |            |                                                       |             |          |                                                                                       | TOC Elevation: feet mai                                                                |              |                                        |  |
| Completed                     |                                            |            |                                                       |             |          |                                                                                       | Depth to Groundwater: feet                                                             |              | Measured                               |  |
| Orling Meth                   |                                            |            |                                                       |             |          |                                                                                       | Groundwater Elevation: feet risk                                                       |              |                                        |  |
| Drilling Comp<br>Geologist: & |                                            |            | Di                                                    | 7           |          |                                                                                       | Total Depth: 25.0 feet                                                                 |              |                                        |  |
|                               | . [                                        | X PECONERY | PTD (pow.)                                            | GRAPHOC LOG | SOL QASS | GEOL(                                                                                 | OGIC DESCRIPTION                                                                       | ELEV. (n-mad | WELL DIAGRAM                           |  |
| 20                            | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 100        | 86<br>86<br>419<br>20.0<br>86<br>86<br>86<br>86<br>86 |             | ML.      | Clayey sit, dark ye gray.  Clayey sit, dark ye medium stiff, dry.  Clayey sit, modera | ellowish brown to light olive ellowish orange to light brown, ste brown with organics. |              | 2* 10, Sch. 40 PVC and 8* steet casing |  |
| 30-                           | 13                                         |            | 86<br>86                                              |             |          | medium stiff, fine.                                                                   | •                                                                                      |              |                                        |  |
| ~7 / 1                        | 15                                         |            | 86                                                    |             |          |                                                                                       |                                                                                        |              |                                        |  |
| 1/\1                          | ~                                          |            | 50                                                    | 바           | GM       | CM electric enc 4                                                                     | nadium bening to summer date                                                           |              |                                        |  |
| #/ \l                         | 16                                         |            | 86                                                    |             |          | orange, a few small                                                                   | necium, brown to yellowish<br>I gravels.                                               |              |                                        |  |
| <b>₩</b>                      |                                            |            |                                                       |             |          | <b>4</b> -, <b>3</b>                                                                  | •                                                                                      |              |                                        |  |
| 35                            | 17                                         | 80         | 86                                                    | 1           |          |                                                                                       |                                                                                        |              |                                        |  |
| 1\ /1                         |                                            |            |                                                       | ipp         |          |                                                                                       | •                                                                                      |              |                                        |  |
| 1 X I                         | 18                                         |            | 86                                                    | 100         |          |                                                                                       |                                                                                        |              |                                        |  |
| 40                            | 10                                         |            | 86                                                    | 0           | GP       | Sand, medium, yello<br>micaceous.                                                     | wish gray to grayish orange,                                                           |              |                                        |  |

# Ersufe ®

### Monitoring Well 07-MW-2UC

| Environmental & Safety Designs, Inc. |                                                      |                      |             |           |         |             |                               | • • .               | Monitoring Well 07-MW-2UC                                   |            |                                           |  |
|--------------------------------------|------------------------------------------------------|----------------------|-------------|-----------|---------|-------------|-------------------------------|---------------------|-------------------------------------------------------------|------------|-------------------------------------------|--|
|                                      | :NYII                                                | OUL                  | ent         | al 6      | Sa      | fety        | De                            | signs, Inc.         |                                                             |            |                                           |  |
|                                      |                                                      | WS M                 |             |           |         |             |                               |                     | Location Mington, TN. SMMLN17 - Building N-28               |            |                                           |  |
|                                      |                                                      | x: NO                |             | <u> </u>  |         |             |                               | ····                | Surface Devators feet mal                                   |            |                                           |  |
|                                      | Started at 150 on 2-07-95<br>Completed at on 2-07-95 |                      |             |           |         |             |                               |                     | TOC Devator: feet inst                                      |            |                                           |  |
|                                      | Driling Method: Rolasonic                            |                      |             |           |         |             |                               |                     | Depth to Groundwater: feet Groundwater Elevation: feet insi |            | Measured                                  |  |
|                                      | _                                                    | Dary.                |             |           | r Onlin | 0           |                               | <del></del>         | Total Depth: 25.0 feet                                      |            |                                           |  |
|                                      |                                                      | 8en l                |             |           |         | <del></del> |                               |                     | Well Screen: 108 to 118 feet                                |            |                                           |  |
|                                      |                                                      |                      |             |           |         | 9           |                               |                     |                                                             | 7          |                                           |  |
| DBTH<br>NFEET                        | LITHOLOGIC                                           | ANN YTICAL<br>SAMPLE | SWALEND     | X RECOVER | 5 50    | GRAPHOC LOG | SOBL CLASS                    | G€OL:               | OGIC DESCRIPTION                                            | BLEV. (N-m | WELL DIAGRAM                              |  |
|                                      |                                                      |                      | 20          |           | BG      | Ve          |                               |                     |                                                             |            |                                           |  |
|                                      | N /                                                  |                      | -~          |           |         | 70          |                               |                     |                                                             | ļ          |                                           |  |
|                                      |                                                      |                      | 21          |           | 86      | N C         |                               |                     |                                                             |            |                                           |  |
| ٠                                    | M                                                    |                      |             |           |         | 0           |                               | ĺ                   |                                                             |            |                                           |  |
| 45-                                  | W                                                    |                      | 22          |           | 86      | V           |                               |                     |                                                             | ļ          |                                           |  |
|                                      | 23 86 0                                              |                      |             |           |         | 6           |                               |                     |                                                             |            |                                           |  |
| •                                    |                                                      |                      |             |           |         | 2           |                               |                     |                                                             |            |                                           |  |
|                                      | $ \Lambda $                                          | 24                   | Be U        | 0         |         |             | velly, grayish orange to dark |                     |                                                             |            |                                           |  |
| 50-                                  | 50-                                                  |                      | 25          |           | 86      | 0           |                               | yellowish orange,   | gravels up to 2" in diameter.                               | }          |                                           |  |
|                                      | $I \setminus V$                                      |                      | 23          |           | 60      | 03          |                               |                     |                                                             |            |                                           |  |
|                                      | $I \setminus V$                                      |                      | 26          | İ         | 86      | 0           |                               |                     |                                                             | l          |                                           |  |
|                                      |                                                      |                      |             |           |         | 0 3         |                               |                     |                                                             | ļ          | Trimminiminiminiminiminiminiminiminiminim |  |
| 55-                                  |                                                      |                      | 27          | 87        | B6      | 0           |                               |                     |                                                             | 1          |                                           |  |
|                                      |                                                      |                      | 28          |           | 86      | 0 9         |                               |                     |                                                             | •          | PVC and 8" steel casing                   |  |
|                                      |                                                      |                      |             |           |         | 0           |                               |                     | •                                                           | 1          |                                           |  |
|                                      | \ /                                                  |                      | 29          |           | 86      | V a         |                               |                     |                                                             | }          | Du II                                     |  |
| 60-                                  | MI                                                   |                      | 30          |           | 86      | 0           | GP                            |                     |                                                             |            | VC and                                    |  |
| ]                                    | M                                                    |                      | ~           |           | 86      | V_9         |                               |                     |                                                             |            | 9                                         |  |
|                                      | V                                                    |                      | 31          |           | B6      | 0           |                               |                     |                                                             |            | 1 6 8 8                                   |  |
|                                      | V                                                    | -                    | • •         | ]         |         | <b>1 9</b>  |                               |                     |                                                             |            | 7 10, Sch. 4                              |  |
| 65-                                  |                                                      |                      | 32          |           | 86      | 03          |                               |                     |                                                             |            |                                           |  |
|                                      | $\Lambda$                                            |                      | 33          |           | 86      | O           |                               |                     |                                                             |            |                                           |  |
| 1                                    | M                                                    |                      |             |           | l       | 0 4         |                               | •                   |                                                             |            |                                           |  |
|                                      |                                                      |                      | 34          |           | 86      |             |                               |                     | •                                                           |            |                                           |  |
| 70-                                  | / 11                                                 |                      | 35          | ļ         | 86      | 0 4         |                               |                     |                                                             |            |                                           |  |
|                                      | $\ \cdot\ $                                          |                      | <i>-</i> -3 | }         | 30      |             |                               |                     |                                                             |            |                                           |  |
|                                      |                                                      |                      | 36          |           | 86      | 10 4        |                               |                     |                                                             |            |                                           |  |
|                                      |                                                      |                      |             |           |         | 0           | ,                             |                     |                                                             | 1          |                                           |  |
| 75                                   | $\Box$                                               |                      | 37          | 90        | BG      | 0 9         |                               |                     | ay to pale yellowish orange,                                |            |                                           |  |
| ]                                    | $\bigvee$                                            |                      | į           | 1         |         | 701         |                               | with light gray cla | y ænises.                                                   | 1          |                                           |  |
|                                      | Λl                                                   |                      |             |           | ļ       | N 4         |                               |                     |                                                             |            | eminiminiminiminiminiminiminiminiminimin  |  |
|                                      | / \                                                  |                      |             |           |         | 0           |                               |                     |                                                             |            |                                           |  |
| 80-                                  |                                                      | ļ                    |             |           |         | 1           |                               |                     |                                                             |            |                                           |  |

### Monitoring Well 07-MW-2UC Environmental & Safety Designs, Inc. Project: NAS Memoris Location Mington, TN SHALW7 - Building N-28 Project No.: A0094 Surface Devators feet mal Started at #50 on 2-07-95 TOC Elevation: feet insi Completed at on 2-07-95 Depth to Groundwater: feet **Heasured** Orling Method: Rolasonic Groundwater Elevation: feet msf Orling Company: North Star Driling Total Depth: 25.0 feet Hell Screen: 106 to 118 feet Geologist: Ben Brantley GRAPHIC LOG AWLYTICAL X RECOVER SOL CASS SWALEND 70 ton GEOLOGIC DESCRIPTION WELL DIAGRAM DEPTH NFEET 0 Silty sand, fine, light olive gray to grayish brown, conatains dusky brown clay lenses. 85 2" 10, Sch. 40 PVC and 8" steel casing 90 95 90 BG Lignite laminations from 94'-95'. Marcasite present at 98'. SM 100 105 0.01 slot, PVC screen 110-115 95 8G Clay, dusky brown, hard, waxy, with thin sand laminations. OL.

# Monitoring Well 07-MW-2UC Environmental & Safety Designs, Inc. Location: Mington, TN SHALMT - Building N-128 Project: NAS Hemphs Project No.: NOOS4 Surface Devators feet as Started at #50 on 2-07-95 TOC Elevation: feet msi Completed at an 2-07-95 Measured Depth to Groundwater: feet Orling Method: Rotasano Groundwater Elevation: feet mist Orling Company: North Star Driling Total Depth: 25.0 feet Geologist: Ben Brantley Well Screen: 106 to 116 feet ELEV. (N-mat) AWLYTICAL SAMPLE QASS X RECOVER 70 CO WELL DIAGRAM GEOLOGIC DESCRIPTION 125 10 90 86 End of boring at 125. 130 135 140 145-150 155-

| [              | Envir      | onm                | Entent  | al &             | Sai        | FE          | ©<br>De:  | signs, Inc.         | Monitoring Well                | 07-          | -MW-3S       |
|----------------|------------|--------------------|---------|------------------|------------|-------------|-----------|---------------------|--------------------------------|--------------|--------------|
|                | ect: A     |                    |         |                  |            |             |           |                     | Locations Mington, TN SHAW     | 7 - Buk      | ing N-26     |
|                | ect No     |                    |         |                  |            |             |           |                     | Surface Elevation: feet mal    |              |              |
|                | rted at    |                    |         | -07-9            | 5          |             |           |                     | TOC Elevations feet mal        |              |              |
| Con            | Deted      | at 5               | 00 an   | 2-11-            | 95         |             |           |                     | Depth to Groundwater: feet     |              | Measurect    |
| Drs.           | ng Meti    | hoct               | Rotas   | anc              |            |             |           |                     | Groundwater Elevations feet ma |              |              |
|                | ng Com     |                    |         | _                | Onling     | 2           |           |                     | Total Depth: 200 feet          |              |              |
| Geo            | togst      | Ben I              | 8 anu   | Ey               |            |             |           |                     | Hel Screen: 10 to 20 feet      |              |              |
| OSPTH<br>NFEET | LITHOLOGIC | AWLYTICAL<br>SAMLE | SWALEND | X RECOVERY       | PTD (tron) | GRAPHOC LOG | SOL CLASS | GEOL(               | OGIC DESCRIPTION               | ELEV. (N-mod | WELL DIAGRAM |
| 5<br>10<br>20- |            |                    | 2       | 40<br>120<br>100 | 86<br>86   |             | ML        | yellowish brown, mo |                                |              |              |
| 25-            |            | •                  |         |                  |            |             |           | Cockfield well at S |                                |              |              |
| 30-            |            |                    |         | ·                |            |             |           |                     |                                |              | ·            |
| 35-            |            |                    |         |                  |            |             |           |                     |                                |              |              |
| 40-            |            |                    |         |                  |            |             |           |                     |                                |              |              |

# Monitoring Well 07-MW-3UF

| Environme                                                     | ental &                                          | Saf       | ety         | Des      | signs, Inc.                                                                                        |                                                                                                                                                   |                |                          |
|---------------------------------------------------------------|--------------------------------------------------|-----------|-------------|----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|
| Project: NAS Men                                              | D/IS                                             | -         | <u>_</u>    |          |                                                                                                    | Location Minglon TN SHAUN                                                                                                                         | - Buidi        | ng N-26                  |
| Project No.: NOOS                                             |                                                  |           |             |          |                                                                                                    | Surface Elevation: feet inst                                                                                                                      |                |                          |
| Started at 1630 or                                            |                                                  |           |             |          |                                                                                                    | TOC Devation: feet insi                                                                                                                           |                |                          |
| Completed at 500                                              | on 2-4-                                          | 95        |             |          |                                                                                                    | Depth to Groundwater: feet                                                                                                                        |                | Heasured                 |
| Orling Method Ro                                              |                                                  |           |             |          |                                                                                                    | Groundwater Elevations feet inst                                                                                                                  |                |                          |
| Drilling Company: /                                           |                                                  | Drang     |             |          |                                                                                                    | Total Depth: 45.0 feet                                                                                                                            |                |                          |
| Geologist: Ben Bra                                            | anuley                                           |           |             |          |                                                                                                    | Hel Screen: to feet                                                                                                                               |                |                          |
| OPTH<br>INFEET<br>LITHOLOGIC<br>SAMPLE<br>AMLYTICAL<br>SAMPLE | SAPLE NO.<br>X PECONERY                          | PID (spm) | GRAPHOC LOG | SOR GASS | ŒŒŒ                                                                                                | OGIC DESCRIPTION                                                                                                                                  | ELEV. (ft-med) | WELL DIAGRAM             |
| 20                                                            | 1 40<br>2 120<br>3 100<br>5 90<br>6 100<br>7 100 | 86        |             | SC SC    | Clayey silt, olive by Clayey silt, modern organics.  Clayey silt with sa Silty clayey sand, brown. | ellowish brown, medium stiff.  ate brown with yellow gray silt,  and, moderate brown.  yellowish orange to yellowish  sh orange to reddish brown, | 63             | The send — Supplies seed |
| 40-                                                           | 8 150                                            | 86        | (4) (2)<br> |          |                                                                                                    |                                                                                                                                                   |                |                          |

# Er Sufe ®

# Monitoring Well 07-MW-3LF

| Project: NAS Respiral Project No. ACCOUNT STATUTE CONTINUE STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE CONTINUE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOUNT STATUTE NO. ACCOU | E               | Envir      | onm                  | ent     | 3 ls                   | Saf            | et    | y              | Des       | signs, Inc.                                                                                                                        | 1101111011119 11011                                                                                                                                                     | •     |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------------------|---------|------------------------|----------------|-------|----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| Project No. A0004  Started at 150 on 2-07-95  Competed at 500 on 2-17-95  Deby to Groundwater feet met  Dring Nethod: Rotsonic  Dring Nethod: Rotsonic  Dring Nethod: Rotsonic  Dring Company. North Star Dring  Geologist: Cere Railburg  Med Screen; 69.5 to 79.5 feet  Surgan Started at 500 on 2-17-95  Geologist: Cere Railburg  Med Screen; 69.5 to 79.5 feet  Surgan Started at 500 on 2-17-95  Geologist: Cere Railburg  Med Screen; 69.5 to 79.5 feet  Surgan Started at 500 on 2-17-95  Geologist: Cere Railburg  Med Screen; 69.5 to 79.5 feet  Geologist: Cere Railburg  Geologist: Cere Railburg  Med Screen; 69.5 to 79.5 feet  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Railburg  Geologist: Cere Rail | Pro             | ect: /     | USH                  | נויסויי |                        |                | _     | <u> </u>       |           |                                                                                                                                    | Location Mington TN SHALE                                                                                                                                               | - Buk | ng N-28      |
| Completed at 500 on 2-M-96  Despit to Groundwater: feet  Measured  Groundwater Elevator: feet as  Despit to Groundwater: feet  Groundwater Elevator: feet as  Dring Company: Abort Star Ording  Geologic: Ben Brantley  Mell Screen: 69.5 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  GEOLOGIC DESCRIPTION  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 35 to 79.5 feet  Mell DIAGRAM  Total Ben's 3 | Pro             | ect No     | : NO                 | 294     |                        |                |       |                |           |                                                                                                                                    |                                                                                                                                                                         |       |              |
| Competed at 500 on 2-M-95  Drilling Method Rokasons  Drilling Company: Natrit Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Method Book Star Drilling  Geologist: Ben Brantley  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method Book Star Drilling  Method | Sta             | rted a     | 630                  | on 2-   | 07-9                   | 5              |       |                |           |                                                                                                                                    | TOC Elevation: feet inst                                                                                                                                                |       |              |
| Drilling Company: North Star Drilling  Geologist: Birth Grantery  Well Screen: 89.5 to 79.5 feet  Well Screen: 89.5 to 79.5 feet  Well Screen: 89.5 to 79.5 feet  Well Screen: 89.5 to 79.5 feet  Well Screen: 89.5 to 79.5 feet  Well Clayer sit, societate brown to anoderate yellowish brown, a cirst.  10  2 120 86  W. Clayer sit, olive black, acirst, soft.  Clayer sit, dark yellowish brown, medium stiff.  Clayer sit, dark yellowish brown, medium stiff.  Clayer sit, moderate brown with yellow gray sit.  Clayer sit, moderate brown with yellow gray sit.  Clayer sit, moderate brown with yellow gray sit.  Clayer sit, moderate brown with yellow gray sit.  Clayer sit, moderate brown with yellow gray sit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Con             | pietec     | at 5                 | 20 an   | 2-H-                   | 96             |       |                |           |                                                                                                                                    |                                                                                                                                                                         |       | Measured     |
| GEOLOGIC DESCRIPTION  THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE | 0.5             | ng Met     | hoct /               | Potas   | onc                    |                |       |                |           |                                                                                                                                    | Groundwater Elevations feet mal                                                                                                                                         |       |              |
| Security of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | Dre             | ng Cor     | noany.               | Nort    | n Star                 | Orang          | 7_    |                |           |                                                                                                                                    | Total Depth: 80.0 feet                                                                                                                                                  |       |              |
| SOUND STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE  | Geo             | logst:     | Ben 6                | 3ranu   | y                      |                |       |                |           |                                                                                                                                    | Well Screen: 69.5 to 79.5 feet                                                                                                                                          |       |              |
| Clayey salt, moderate brown with yellow gray salt, organics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OGPTH<br>INFEET | LITHOLOGIC | ANALYTICAL<br>SAMPLE | SWELEND | X PECOVERY             | PTD (spen)     | 20120 | Growner Little | SOL CLASS | ŒŒ                                                                                                                                 | OGIC DESCRIPTION                                                                                                                                                        | ٤     | HELL DIAGRAM |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>20<br>25   |            | ₹ S                  | 3 . 4   | 40<br>120<br>100<br>90 | 86<br>86<br>86 |       |                | ML.       | Clayey sit, olive b Clayey sit, dark y Clayey sit, moder organics.  Clayey sit with sa Sity clayey sand, brown. Sity sand, yellowi | whack, moist, soft.  Tellowish brown, medium stiff.  The brown with yellow gray sait,  The brown with yellow gray sait,  The brown with orange to yellowish  The brown, | 3     | Sc.          |

|                 |                | 4                  | E         | 75         |             | FE         | •          |                                       | Monitoring Well                                     | 07-               | MW-3LF                                                                      |
|-----------------|----------------|--------------------|-----------|------------|-------------|------------|------------|---------------------------------------|-----------------------------------------------------|-------------------|-----------------------------------------------------------------------------|
|                 | _              |                    |           |            | Sa          | tety       | Des        | signs, Inc.                           |                                                     |                   |                                                                             |
|                 | ect N          |                    |           |            |             |            |            |                                       | Location: Minglon, TN SHAU                          | 17 <b>- Bul</b> d | hg N-28                                                                     |
|                 | ect No         |                    |           | 07-0       |             |            |            |                                       | Surface Devators feet mal                           |                   |                                                                             |
|                 | pieted         |                    |           |            |             |            |            | · · · · · · · · · · · · · · · · · · · | TOC Elevation: feet mal  Depth to Groundwater: feet |                   | Heasted                                                                     |
|                 | ng Met         |                    |           |            |             |            |            |                                       | Groundwater Elevation: feet #5                      | 1                 | 768064                                                                      |
|                 | ng Com         |                    |           |            | Online      | ,          |            |                                       | Total Depth: 80.0 feet                              |                   |                                                                             |
|                 | logist         | _                  |           |            |             |            |            |                                       | Well Screen: 69.5 to 79.5 feet                      |                   |                                                                             |
| OEPTH<br>INFEET | SAPLE<br>SAPLE | ANLYTICAL<br>SAPLE | ON FLANS  | % RECOVERY | (wota) CELA |            | SOUL CLASS | G€OL(                                 | OGIC DESCRIPTION                                    | ELEV. (N-mad      | WELL DIAGRAM                                                                |
|                 | \ /            |                    |           |            |             | 11         | SC         |                                       |                                                     | 1                 |                                                                             |
| 45-             | X              |                    | 9         | 120        | 86          | 000000     |            | brown.                                | wish orange to yellowish parse, grayish orange to   |                   |                                                                             |
| 50-<br>55-      | $\bigvee$      |                    | <b>10</b> | 75         | 86          | 0000000000 | GP         |                                       |                                                     |                   | 2" ID, Sch. 40 PvC and 8" steel casing ———————————————————————————————————— |
| 65-             | $\bigvee$      | -                  | п         | 80         | 86          | 00000000   |            |                                       |                                                     |                   | 2 10                                                                        |
| 75-             |                |                    | צ         | 80         | 86          | 000000     | SC         | Sitty sand, fine, ye                  | flowish orange to yellow gray.                      |                   | ### 0.01 slot, PVC screen — [[11]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]           |

### Monitoring Well 07-MW-3UC Environmental & Safety Designs, Inc. Project: NAS Memoris Location: Mington TN SWMLW7 - Building N-128 Project No.: NO094 Surface Elevation: leet mil Started at 1630 on 2-07-96 TOC Elevation: feet inst Completed at 1500 on 2-14-95 Depth to Groundwater: feet Measurect Orang Method: Rotasanic Groundwater Elevation: feet inst Total Depth: #5.0 feet Orling Company: North Star Driling Well Screen: 97 to 107 feet Geologist: Ben Brantley GRAPHIC LOG ANNETICAL SMALE CITHOLOGIC SWALEND X RECOVER 3 WELL DIAGRAM GEOLOGIC DESCRIPTION 2 Clayey sit, moderate brown to moderate yellowish brown, moist. BG 2 86 5 40 3 BG 86 10 5 120 86 86 8 40 PVC and 8" steel casing 7 86 100 ML Clayey sit, olive black, moist, soft. ٥ 86 10 86 Clayey silt, dark yellowish brown, medium stiff. 20 11 90 86 12 **8**G SCF Ö 13 86 25 90 Clayey sat, moderate brown with yellow gray sat. 14 86 organics. 15 86 30 100 **B6** 16 Clayey silt with sand, moderate brown. 17 86 Sity clayey sand, yellowish orange to yellowish prown. 18 86 35 100 SC

Sity sand, yellowish orange to reddish brown,

fine to medium grained.

86

86

**8**G

120

20

### Monitoring Well 07-MW-3UC Environmental & Safety Designs, Inc. Project: NAS Memoria SHALM7 - Building N-128 Location Mington TN Project No.: NO094 Surface Devators feet as Started at 1630 on 2-07-96 TOC Elevation feet may Completed at 500 on 2-14-95 Measured Depth to Groundwater: feet Orling Method Rolasonc Groundwater Elevation: leet mail Drilling Company: North Star Drilling Total Depth: 150 feet Geologist: Ben Brantley Well Screen: 97 to 107 feet ANKYTICA SAFIE GRAPHOC LOG UTHOLOGIC SAPPLE SOIL GLASS SAPLEND έ 3 WELL DIAGRAM GEOLOGIC DESCRIPTION N-FEET £ 0.2 SC 22 Sand, yellowish gray, fine. 23 0.2 Sand, medium, yellowish orange to yellowish 45 8G 24 120 Sand, medium to coarse, grayish orange to yellow gray, with gravels. 02 1 25 O 0.2 26 O 50 0.2 27 28 86 2" ID, Sch. 40 PVC and 8" steel casing 55 29 75 86 30 BG Ø 86 GP 60 32 86 O 33 86 65 34 80 86 7 35 86 36 86 70-37 86 0.2 38 **75** 30 80 0.2 O 40 86 Sity sand, fine, yellowish orange to yellow gray. 86 SC 80 CL.

### Monitoring Well 07-MW-3UC Environmental & Safety Designs, Inc. Project: NAS Memphs Location: Mington, TN SWALWT - Building N-26 Project No.: NO094 Surface Devators leet ms/ Started at 1630 on 2-07-95 TOC Elevation: feet fist Completed at 1500 on 2-14-95 Depth to Groundwater: feet Measurect Orling Method: Rotasano Groundwater Elevation: feet mil Orling Company: North Star Orling Total Depth: #5.0 feet Geologist: Ben Brantley Well Screen: 97 to ID7 feet GRAPHEC LOG SMALE LITHOLOGIC ANN TIEN SAPPLE QASS SWALE NO. έ 8 GEOLOGIC DESCRIPTION WELL DIAGRAM Clay, dusky brown to olive gray, with light gray 42 86 sand 43 2" ID, Sch. 40 PVC and 8" steel casing BG 85 105 BG 45 **8**6 48 90 47 86 Lignitic from 91'-93'. 48 **B6** 95 105 86 50 86 51 **B6** 0.01 slot, PVC screen 100-52 BG 53 86 105 100 86 Clay, dusky brown, waxy, contains less sand. 55 86 58 86 110-57 **B**6 58 86 115 BG 110 End of boring at 115". 120

# EN SUFE

Monitoring Well 07-MW-4S

| 1 8             | Envir               | onm         | ent     | 3 la       | Sat      | fety        | Des      | signs, Inc.                                          | Monitoring wen                            | O i         | 1111 TO                                                   |
|-----------------|---------------------|-------------|---------|------------|----------|-------------|----------|------------------------------------------------------|-------------------------------------------|-------------|-----------------------------------------------------------|
|                 | rect: A             |             |         |            |          |             |          |                                                      | Location Mington TN SHMUM                 | - Buk       | ing N-26                                                  |
|                 | JECT NO             |             |         |            |          | -           |          |                                                      | Surface Elevation: feet mal               |             |                                                           |
|                 | rted at             |             |         |            | -        |             |          |                                                      | TOC Elevation: feet ms/                   |             |                                                           |
| Con             | peted               | at O        | 210 an  | 2-16-      | 95       |             |          |                                                      | Depth to Groundwater. Icet                |             | Heasured                                                  |
| O               | ng Met              | hod /       | Rolas   | onic       |          |             |          |                                                      | Groundwater Elevation: feet mal           |             |                                                           |
|                 | ng Con              |             |         |            | Online   | 2           |          |                                                      | Total Depth: 20.0 feet                    |             |                                                           |
| Geo             | dogst               | Jack        | Cama    | chad!      |          | ,           |          | ,                                                    | Well Screen: 10 to 20 feet                |             |                                                           |
| DEPTH<br>INFEET | UTHOLOGIC<br>SAPPLE | ANNETE SAME | SAPLEND | * RECOVERY | 70 (spm) | GRAPHIC LOG | SOL QASS | G€OL(                                                | OGIC DESCRIPTION                          | ELEV. (N-md | HELL DIAGRAM                                              |
| 5-<br>10-       |                     |             | 2       | 62.5<br>50 |          |             | ML       | Clayey silt, modera<br>Clayey silt, dark y<br>moist. | elow brown, medium stiff,                 |             | 0.01 slot, PVC screen — — — — — — — — — — — — — — — — — — |
| 20-             | Å                   |             | 4       | 80         | 86       |             |          | hard.                                                | ken from the boring for the WMU#7 Site 4. |             |                                                           |
| 25-             |                     | -           |         |            |          |             |          |                                                      |                                           |             |                                                           |
| 30-             |                     |             |         |            |          |             |          |                                                      |                                           |             |                                                           |
| 35-             |                     |             |         |            |          |             |          |                                                      | •                                         |             |                                                           |
| 40-             |                     |             |         |            |          |             |          |                                                      |                                           |             |                                                           |

### • Monitoring Well 07-MW-4UF Environmental & Safety Designs, Inc. Location: Mington, TN SHAUM7 - Building N-26 Project: NAS Memoris Project No.: NOO94 Surface Elevation: feet mail Started at 0900 on 1-09-95 TOC Devauore feet mail Completed at 0910 on 2-15-95 Measured Depth to Groundwater: feet Drilling Method: Rotasonic Groundwater Elevation: feet mil Total Depth: 450 feet Driling Company: North Star Driling Well Screen: 35 to 45 feet Geologist: Jack Carmichael GRAPHOC LOG ANNLYTICAL SAFRE QASS X RECOVER SWALEND 70 ton GEOLOGIC DESCRIPTION WELL DIAGRAM COSTA INFEET 8 Clayey sit, moderate brown, stiff. 82.5 BG 10 50 2 86 2" 10, Sch. 40 PVC and 8" steel casing ML 60 86 Clayey silt, dark yellow brown, medium stiff, moist... Clayey silt, moderate yellow with reddish brown, 20 80 86 25 80 86 Clay, sity, trace sand, very fine, moderate reddish brown, stiff. Sand, clayey, silty, finely micaceous, moderate reddish orange to moderate reddish brown. 30-SC 35 BG 110 Sand, very fine to fine, silty, clayey, laminated, small clay casts, pale orange to moderate red.

|       |                    | Onn | ent |     |           | <b>F</b>    | De        | signs, Inc.                                | Monitoring We                                        |               |         |            |              |
|-------|--------------------|-----|-----|-----|-----------|-------------|-----------|--------------------------------------------|------------------------------------------------------|---------------|---------|------------|--------------|
|       | rect: /            |     |     |     |           |             |           |                                            | Location Hillington, TN SHA                          | UP7 - BJK     | ing N-1 | 26         |              |
|       | ect N              |     |     | -   |           |             |           |                                            | Surface Elevations   feet mail                       |               |         |            |              |
|       | rted a             |     |     |     |           |             |           | <del></del>                                | TOC Devators feet mal                                |               |         |            |              |
| _     | peter              |     |     |     | -50       |             |           |                                            | Depth to Groundwater: feet                           |               | Meas    | red        |              |
|       | ng Mel             |     |     |     |           |             |           |                                            | Groundwater Elevations feet                          | RS/           |         |            |              |
|       | ng Con<br>dogst    |     |     |     | Onen      | <u>g</u>    |           |                                            | Total Depth: 45.0 feet  Net Screen: 35 to 45 feet    |               |         |            |              |
| NFEET | UPPOLOGIC<br>SAPLE |     |     |     | PTO (DDM) | GRAPHOC LOG | SOL CLASS | GEOLG                                      | OGIC DESCRIPTION                                     | ELEV. (n-mal) | HE      | ELL DIAGRA | W            |
| 45-   |                    |     | 7   | 105 |           |             | sc        |                                            | fine, silty, some clay, dark<br>grayish orange, wet. |               |         |            | - 10/20 send |
|       |                    |     |     |     |           |             |           | Log information tal<br>Cockfield well at S | ten from the boring for the MMU#7 Site 4.            |               |         |            |              |
| 50-   |                    |     |     |     |           |             |           |                                            |                                                      |               |         |            |              |
| 55-   |                    |     |     |     |           |             |           |                                            |                                                      |               |         |            |              |
| 80-   |                    |     |     |     | ÷         |             |           |                                            |                                                      |               |         | •          |              |
| es-   |                    | •   |     |     |           |             |           |                                            |                                                      |               |         |            |              |
| 70-   |                    |     |     |     |           |             |           | ·                                          |                                                      |               |         |            |              |
|       |                    |     |     |     |           |             |           |                                            |                                                      |               |         |            |              |
| 75-   |                    |     |     |     |           |             |           |                                            |                                                      |               |         |            |              |
| 80-   |                    |     |     |     |           |             |           |                                            |                                                      |               |         |            |              |

### Monitoring Well 07-MW-4LF Environmental & Safety Designs, Inc. Project: NAS Memoris Location: Mington, TN SWALM7 - Building N-128 Project No.: NOOS4 Surface Devators feet inst Started at 0900 on 1-09-95 TOC Elevation: feet mal Completed at 0910 on 2-15-95 Depth to Groundwater: /eet Deves Orling Method: Rotasonic Groundwater Elevation: feet inst Draing Company: North Star Draing Total Depth: 70.0 feet Hel Screen: 60 to 70 feet Geologist: Jack Carmichael GRAPHIC LOG UTHOLOGIC SWALE AWLYTICAL SAFRE QASS SWELEND X RECOVER Ę 3 HELL DIAGRAM GEOLOGIC DESCRIPTION DEPTH NFEET Ę Clayey silt, moderate brown, stiff. 62.5 BG 50 BG 2 10, Sch. 40 PVC and 8" steel casing 15 3 60 BG Clayey silt, dark yellow brown, medium stiff, moist\_ Clayey sit, moderate yellow with reddish brown, hard. 20 80 86 25 5 80 86 Clay, salty, trace sand, very fine, moderate reddish brown, stiff. Sand, clayey, silty, finely micaceous, moderate reddish orange to moderate reddish brown. 30 SC 35 8 110 BG Sand, very fine to fine, silty, clayey, laminated, small clay casts, pale orange to moderate red.

|                | Envir               | onm                 | Ent. | al &       | Sat        | <b>FE</b>   | De         | signs, Inc.                               | Monitoring Wel                                        | 07-           | -MW-4LF                                                                     |
|----------------|---------------------|---------------------|------|------------|------------|-------------|------------|-------------------------------------------|-------------------------------------------------------|---------------|-----------------------------------------------------------------------------|
|                | ect A               |                     |      |            | -          |             |            | 319110, 1110.                             | Location Mington, TN SHAU                             | 47 - D.A      | MA-06                                                                       |
|                | ect No              |                     |      | ,          |            |             |            |                                           | Surface Devation: feet #sl                            | 7 - 500       | J. J. J. J. J. J. J. J. J. J. J. J. J. J                                    |
|                | rted a              |                     |      | -00-0      | <u> </u>   |             |            |                                           | TOC Elevation: leet as/                               |               |                                                                             |
|                | noieted             |                     |      |            |            |             |            |                                           | Depth to Groundwater. /eet                            |               | Measured                                                                    |
|                | ing Met             |                     |      |            |            |             |            |                                           | Groundwater Elevation: feet ma                        | <del></del>   | readed                                                                      |
|                | ng Con              | _                   |      |            | Onlin      |             |            | <del></del>                               | Total Depth: 70.0 leet                                |               |                                                                             |
|                | ologist             | _                   |      |            | -          | <u>y</u>    |            | <del> </del>                              | Hell Screen: 80 to 70 feet                            |               |                                                                             |
| OBTH<br>INFEET | UTHOLOGIC<br>SAMPLE | AMLYTICAL<br>SAMPLE |      | X PECONERY | PIO (topa) | GRAPHIC LOS | SOIL CLASS | GEOL                                      | OGIC DESCRIPTION                                      | ELEV. (N-mad) | WELL DIAGRAM                                                                |
| 45-            | $\bigvee$           |                     | 7    | 105        | BG         |             | sc         | · ·                                       | fine, säty, some clay, dark<br>o grayish orange, wet. |               | ing ————————————————————————————————————                                    |
| 50-            | $\bigvee$           |                     |      |            |            | 0000        |            | Sand, gravelly, cla<br>moderate yellowish | ly balls, grayish orange to<br>h brown.               |               | 2" ID, Sch. 40 PVC and 8" steel casing ———————————————————————————————————— |
| 5 <b>5</b> -   | $\bigvee$           |                     | 8    | 100        | 86         | 0000000     | 6P         | Sand with gravel,<br>to moderate yellor   | fine to coarse, grayish orange<br>wish brown, wet.    |               | 2° 10, Sch. 40 PVC and 8° steel casing                                      |
| 85-            | $\bigvee$           | ,                   | 9    | 100        | 86         | 300000      |            | Gravel, sandy, no<br>yellowish orange.    | derate <del>yell</del> owish brown to dark            |               |                                                                             |
| 70-<br>75-     |                     |                     | 10   | 100        | 86         |             |            | Log information ta<br>Cockfield well at S | ken from the boring for the SHHU#7 Site 4.            |               |                                                                             |

### ◉ Monitoring Well 07-MW-4MC Environmental & Safety Designs, Inc. SHALW7 - Building N-26 Project: NAS Hemons Location: Milington, TN Project No.: NOO94 Surface Devators feet msi Started at 0900 on 1-09-95 TOC Elevation feet as Completed at 0910 on 2-16-95 Measured Depth to Groundwater: feet Orling Method: Rotasanic Groundwater Elevation: feet ms/ Drilling Company: North Star Drilling Total Deptir MSO feet Hel Screen: 28 to 138 feet Geologist: Jack Carrichael TE E GRAPHIC LOG ANNLYTICAL SAPRE **CASS** LITHOLOGIC X RECOVER P10 (spa.) HELL DIAGRAM GEOLOGIC DESCRIPTION OBPTH NFEET BE. Clayey sit, moderate brown, stiff. 86 BG 3 62.5 BG BG 5 86 **B6** Ю 50 **B**6 ML 86 ID, Sch. 40 PVC and'B" steel casing 60 15 Clayey sit, dark yellow brown, medium stiff, 86 86 Clayey silt, moderate yellow with reddish brown, 20 80 86 BG 12 25 IJ 80 86 Clay, sity, trace sand, very fine, moderate reddish brown, stiff. 14 86 Sand, clayey, sity, finely micaceous, moderate reddish orange to moderate reddish brown. 86 30 86 17 **B6** SC 35 18 110 BG Sand, very fine to fine, sitty, clayey, laminated, small clay casts, pale orange to moderate red. 86 20 BG

|                 | Envir                                     | onm        | Ent     | al &       | Sa          | <b>FE</b>   | De:        | signs, Inc.                               | Monitoring Well                                        | 07-          | -MW-4MC                                                                                  |
|-----------------|-------------------------------------------|------------|---------|------------|-------------|-------------|------------|-------------------------------------------|--------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|
|                 | ect: /                                    |            |         |            |             |             |            | 3.10, 5.101                               | Location Allington TN SHALL                            | 7 - Bulo     | na N- 26                                                                                 |
|                 | ect No                                    |            |         |            |             |             |            |                                           | Surface Elevations feet inst                           |              |                                                                                          |
|                 | rted a                                    |            |         | -09-8      | 5           |             |            |                                           | TOC Devator: feet msl                                  |              |                                                                                          |
|                 | pletec                                    |            |         |            |             |             |            |                                           | Depth to Groundwater: feet                             |              | Heasured                                                                                 |
| Dra             | ng Met                                    | hoct       | Rotas   | one:       |             |             |            |                                           | Groundwater Elevation: feet ins                        |              |                                                                                          |
|                 | ng Con                                    |            |         |            | Onlin       | 0           |            |                                           | Total Deptit: 145.0 feet                               |              |                                                                                          |
|                 | logst                                     |            |         |            |             |             |            |                                           | Hel Screen: 28 to 138 feet                             |              |                                                                                          |
| DEPTH<br>INFEET | LITHOLOGIC                                | ANNLY TEAL | SMPLEND | X RECOVERY | PTD (trons) | GRAPHOC LOG | SOIL CLASS | ŒŒŒ                                       | OGIC DESCRIPTION                                       | ELEV. (N-mad | WELL DIAGRAM                                                                             |
|                 | /                                         |            | 21      |            | <b>B</b> G  | 33          |            |                                           |                                                        |              |                                                                                          |
| 45-             | X                                         |            | 22      | 105        | B6<br>B6    |             | sc         |                                           | fine, silty, some clay, dark<br>o grayish orange, wet. |              | THE PROPERTY OF THE SCH. 40 PVC and 8" steel casing ———————————————————————————————————— |
|                 | \ /                                       |            | 24      |            | 86          | 0           |            | Sand, gravelly, cla<br>moderate yellowish | y balls, grayish orange to<br>brown.                   |              |                                                                                          |
|                 | $\bigvee$                                 |            | 25      |            | 96          | 0           |            |                                           |                                                        |              |                                                                                          |
| 50-             | $ \Lambda $                               |            | 28      |            | 86          | 700         |            | ·                                         |                                                        |              |                                                                                          |
|                 | $/\setminus$                              |            | 27      |            | 86          | 0           |            |                                           |                                                        |              |                                                                                          |
| 55-             |                                           |            | 28      | 100        | 86          | 200         |            | Sand with gravel, it to moderate yellow   | ine to coarse, grayish orange<br>rish brown, wet.      |              | el cesin                                                                                 |
|                 | $\setminus \mid$                          |            | 30      |            | 86          | 000         | GP         |                                           |                                                        |              | and 8" steet casing                                                                      |
| 60-             | X                                         |            | 31      |            | 86          | 0           |            |                                           |                                                        |              | PVC an                                                                                   |
|                 | $/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |            | 32      |            | 86          | 000         |            |                                           |                                                        |              | THE SCH. 40 PVC.                                                                         |
| 85~             |                                           |            | 33      | 100        | <b>B</b> G  | 0           |            | Gravel, sandy, soo<br>yellowish orange.   | lerate yellowish brown to dark                         |              | - 2- 10.                                                                                 |
|                 | $\setminus / \mid$                        |            | 34      |            | 86          | 0           |            |                                           |                                                        |              |                                                                                          |
| 70-             | XI                                        |            | 35      |            | 86          | v o         |            | Sand vary fine in                         | fine, silty, clayey, laminated,                        | 4            |                                                                                          |
|                 | $/\!\!\setminus\!\!\! $                   |            | 36      |            | BG<br>BG    |             |            |                                           | to grayish brown, stiff,                               |              |                                                                                          |
| 75-             |                                           |            | 38      | 100        | 86          |             | SC         | Sand, very fine to                        | fine with clay streaks, pale                           |              |                                                                                          |
|                 | $\bigvee$                                 |            | 39      |            | 86          |             |            |                                           | n gray stained dark yellowish                          |              |                                                                                          |
| 80              | $\triangle$                               |            | 40      |            | 86          |             |            |                                           |                                                        |              |                                                                                          |



# Monitoring Well 07-MW-4MC

|                 | Envir               | onm        | ent      | al &       | Sa         | fety        | De         | signs, Inc.                             | monitoring man                                | •            |                                                                 |
|-----------------|---------------------|------------|----------|------------|------------|-------------|------------|-----------------------------------------|-----------------------------------------------|--------------|-----------------------------------------------------------------|
|                 | ect: /              |            |          |            |            | <u> </u>    |            |                                         | Location Mington, TN SWML                     | 7 - B/c      | ng N-28                                                         |
|                 | ect No              |            |          |            |            |             |            |                                         | Surface Elevation: feet inst                  |              |                                                                 |
| Sta             | rted a              | 090        | on t     | -09-5      | 8          |             |            |                                         | TOC Elevation: feet mal                       |              |                                                                 |
| Con             | pletec              | at O       | 910 an   | 2-16-      | -96        |             |            |                                         | Depth to Groundwater: feet                    |              | Measured                                                        |
|                 | ng Met              |            |          |            |            |             |            |                                         | Groundwater Elevation: feet ris               |              |                                                                 |
|                 | ng Co               |            |          |            | Orin       | 9           |            |                                         | Total Depth: 145.0 feet                       |              |                                                                 |
| Geo             | ogst<br>1           | Jack       | Cam      | chael      |            |             |            | r                                       | Well Screen: 128 to 138 feet                  | T =          |                                                                 |
| DEPTH<br>INFEET | LITHOLOGIC          | ANALYTICAL | SAMPLEND | X PECOVERY | PID (trom) | GRAPHEC LOS | SOIL CLASS | GEOL(                                   | OGIC DESCRIPTION                              | ELEV. (ft-ma | WELL DIAGRAM                                                    |
|                 | 1                   |            | 41       |            | 86         | 16          |            |                                         |                                               |              |                                                                 |
|                 | X                   |            | 42       |            | BG         |             |            | Sand yeary fine to                      | fine, with clay streaks,                      | 1            |                                                                 |
| 85-             | $\langle \ \rangle$ |            | 43       | 100        | BG         |             |            |                                         | ery pale orange, stained dark                 |              |                                                                 |
|                 | 1                   |            |          | ~          | 1          |             |            | Sand, very fine to                      | fine, clayey, laminated, pale                 |              |                                                                 |
|                 |                     |            | 44       |            | 86         |             |            | brown to moderate<br>Sand, very fine to | e brown, wet.<br>fine, laminated, medium gray |              | 40 PVC and 6" steel casing ———————————————————————————————————— |
| 90-             | 1 Y                 |            | 45       |            | 86         |             |            | to grayish brown,                       | with occassional lignite chips.               |              |                                                                 |
|                 | 1/                  |            | 46       |            | 86         |             |            |                                         |                                               |              |                                                                 |
|                 | $V \setminus$       |            | 47       |            | 86         |             |            |                                         |                                               |              |                                                                 |
| 95-             |                     |            | 48       | 100        | BG         |             |            |                                         |                                               |              | 40 PVC and 8" steet casing                                      |
|                 | $\Lambda / I$       |            | 49       |            | 86         |             |            |                                         |                                               |              | • • • • • • • • • • • • • • • • • • •                           |
| 100-            | lVI                 |            | 50       |            | BG         |             |            |                                         | ę                                             |              | C and 8                                                         |
|                 | $ \Lambda $         |            | 51       |            | BG         |             | SC         |                                         |                                               |              | O PVC                                                           |
|                 | ]/\                 |            | 52       |            | 86         |             |            |                                         |                                               |              | Sch. 4                                                          |
| 105-            | <b>/</b>            |            | 53       |            | 86         |             |            |                                         |                                               |              | * 10, Sch.                                                      |
|                 |                     |            | 54       | 109        | 86         | 77          |            |                                         |                                               |              |                                                                 |
|                 | $  \backslash /  $  |            | 55       |            | 86         | 99          |            |                                         |                                               |              |                                                                 |
| 110-            | X                   |            | 58       |            | 86         | 99          |            |                                         |                                               |              |                                                                 |
|                 | $/ \setminus$       |            | 57       |            | 86         |             |            |                                         |                                               |              |                                                                 |
| 115-            |                     |            | 58       | 100        | <b>B</b> 6 |             |            | Sand, very fine to                      | fine, clayey with fignitic chips,             |              |                                                                 |
|                 | $\bigvee$           |            | 59       |            | 86         |             |            |                                         | to grayish brown, clayey                      |              |                                                                 |
|                 | $\bigwedge$         |            | 60       |            | <b>8</b> G |             |            |                                         |                                               |              | miniminiminiminiminiminiminiminiminimin                         |
| 120-            |                     |            |          |            |            |             |            |                                         |                                               | 1            | I                                                               |

|                 |                    |    | E   | 74         | <u> </u>    | FE          | Θ         |                     | Monitoring Well                                                  | 07-          | -MW-4MC                   |
|-----------------|--------------------|----|-----|------------|-------------|-------------|-----------|---------------------|------------------------------------------------------------------|--------------|---------------------------|
| 1               | Envir              | OU | ent | al &       | Sa          | fety        | De        | signs, Inc.         |                                                                  |              |                           |
|                 | ect /              |    |     |            |             |             |           |                     | Location: Mangion, TN SWALM                                      | 7 - Buk      | ing N-128                 |
|                 | ect N              |    |     |            |             |             |           |                     | Surface Elevation: feet insi                                     |              |                           |
|                 | rted a             |    |     |            |             |             |           |                     | TOC Elevation: feet inst                                         |              |                           |
|                 | peter              |    |     |            | · <u>ss</u> |             |           |                     | Depth to Groundwater: feet                                       |              | Measured                  |
|                 | ng Mei             |    |     |            |             |             |           |                     | Groundwater Elevation: feet msi                                  |              |                           |
|                 | ng Cor<br>xlogist: |    |     |            | U.          | 9           |           |                     | Total Deptir: 145.0 feet Well Screen: 128 to 138 feet            |              |                           |
| DEPTH<br>INFEET | LIHOLOGIC          | 3  |     | X PECOVERY | (acc) Of    | GRAPHOC LOG | SOL Q.ASS | GEOL(               | OGIC DESCRIPTION                                                 | ELEV. (N-ma) | WELL DIAGRAM              |
|                 | V                  |    | 61  |            | 86          |             |           |                     |                                                                  |              | Grout -                   |
| 125-            |                    |    | 63  | 100        | 86          |             |           | ,                   |                                                                  |              | or out                    |
|                 | $\Lambda$          |    | 84  |            | BG          |             |           |                     |                                                                  |              |                           |
| 130-            | V                  |    | 65  |            | 86          |             |           |                     |                                                                  |              |                           |
| 130             |                    |    | 66  |            | 86          |             | SC        |                     |                                                                  |              | 1, PVC screen             |
|                 | V                  |    | 67  |            | 86          |             |           |                     |                                                                  |              | 0.01 slot, PVC screen     |
| 135-            | \ /                |    | 68  | 150        | 86          |             |           |                     | fine, lignitic, light brownish<br>own, cohesive in clayey zones, |              | - 0.01 slot, PVC screen - |
|                 | $  \bigvee  $      |    | 70  |            | BG          |             |           | Lignitic, čusky bro | wn, hard.                                                        |              |                           |
| 140-            | $ \lambda $        |    | 71  |            | 86          |             |           | 1                   | of sand, laminated dark<br>or changes below 141', stiff.         |              | 000                       |
|                 | $/\setminus$       |    | 72  |            | 86          |             | CL        |                     |                                                                  |              | 0000                      |
| 145-            |                    |    | 73  | 100        | 86          |             |           | End of boring at 1  | 45'.                                                             |              | <u> </u>                  |
| 150-            |                    |    |     |            |             |             |           |                     |                                                                  |              |                           |
| 155-            |                    |    |     |            |             |             |           |                     |                                                                  |              |                           |
| 160-            |                    |    |     |            |             |             |           |                     | •                                                                |              |                           |

### Environmental & Safety Designs, Inc. Monitoring Well 07-MW-UF Location: Mington, TN SHMUNT - Building N-28 Project: NAS Memoris Surface Elevation: feet ms/ Project No.: NOOS4 Started at on 1-09-95 TOC Elevation: feet ms/ Completed at an 2-21-95 Depth to Groundwater: feet **Measured** Groundwater Elevation: feet msf Orling Method: Rotasano Total Depth: 45.0 feet Orling Company: North Star Driling Hel Screen: 35 to 45 feet Geologist: Jack Carrichael ANNLYTICAL SY70 K RECOVER SWALEND 3 HELL DIAGRAM GEOLOGIC DESCRIPTION ee. Ş Clayey silt, moderate brown to yellowish brown, trace of organics. 75 BG 1 2 60 86 3 15 100 86 Clayey silt, dark yellowish brown, stiff, hard. 20 4 90 86 25 30 5 **8**G 90 Sandy clay, fine, medium light brown, soft, wet. 35 6 90 **BG** 5 Silty sand, medium, light brown, grayish orange to yellow gray. SC

| E               | Envir     |           |         | al &       |            |             | ©<br>De:  | signs, Inc.                                | Monitoring Wel                                              | 1 07-            | -MW-UF     |                |  |
|-----------------|-----------|-----------|---------|------------|------------|-------------|-----------|--------------------------------------------|-------------------------------------------------------------|------------------|------------|----------------|--|
| Pro             | ect: A    | MS H      | emph    |            |            |             |           |                                            | Location: Hillington, TN SHAU                               | 47 <b>-</b> Bulo | ing N-128  |                |  |
|                 | rect No   |           |         |            |            |             |           |                                            | Surface Elevations feet insi                                |                  |            | 1              |  |
|                 | rted at   |           |         |            |            |             |           |                                            | TOC Elevation: feet and                                     |                  | Manusad    |                |  |
|                 | ng Met    |           |         |            |            |             |           |                                            | Depth to Groundwater: feet<br>Groundwater Elevation: feet m | <del></del>      | Measured   |                |  |
|                 | ng Con    |           |         |            | Orin       | 0           |           |                                            | Total Depth: 45.0 feet                                      |                  |            |                |  |
|                 | dogst     |           |         |            |            |             |           |                                            | Hell Screen: 35 to 45 leet                                  |                  |            |                |  |
| DEPTH<br>INFEET | LIPPLOSIC | AWLYTICAL | SWITEND | * PECOVERY | PTD (tron) | GRAPHOC LOG | SOL CLASS | GEOL(                                      | OGIC DESCRIPTION                                            | ELEV. (n-mad)    | WELL DIAGR | AM             |  |
|                 | $\bigvee$ |           |         |            |            |             | sc        | Silty sand, medium,<br>brown.              | , yellowish orange to light                                 |                  |            | - 10/20 send - |  |
| 45-             |           |           |         |            |            | 6.03.02     |           | Log information tal<br>Cockfield well at S | ten from the boring for the MHU#7 Site 5.                   |                  | <b>T</b>   | •              |  |
| 50-             |           |           |         |            |            |             |           |                                            |                                                             |                  |            |                |  |
| 55-             |           |           | 7       | •0         | 86         |             |           |                                            |                                                             |                  |            | 4              |  |
| 1               |           |           |         |            |            |             |           |                                            |                                                             |                  |            |                |  |
|                 |           |           | •       |            |            |             |           |                                            |                                                             |                  |            |                |  |
| 60-             |           |           |         |            |            |             |           |                                            |                                                             |                  |            |                |  |
| 65-             |           |           |         |            |            |             | ٠         |                                            |                                                             |                  |            |                |  |
| 70-             |           |           |         |            |            |             |           |                                            |                                                             |                  |            |                |  |
|                 | 1         |           | - 1     |            | i          |             | ĺ         |                                            |                                                             |                  | 1          |                |  |

80-

| Environmental C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntal & Safety Designs, Inc.                                                                            | Monitoring Well 07                                              | -MW-5LF                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| Project: NAS Memoris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                 |                                                                        |
| Project No.: NOOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        | Location: Milington, TN SNAUM7 - 8  Surface Elevation: feet msl | uony                                                                   |
| Started at on 1-09-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | TOC Elevations feet mail                                        |                                                                        |
| Completed at on 2-21-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2I-95                                                                                                 | Depth to Groundwater: feet                                      | Heasyed                                                                |
| Drilling Method: Rotasonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tsonc                                                                                                  | Groundwater Elevation: feet mal                                 |                                                                        |
| Drilling Company: North Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        | Total Depth: 75.0 feet                                          |                                                                        |
| Geologist: Jack Carmichael                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mohael                                                                                                 | Hell Screen: 66 to 76 feet                                      |                                                                        |
| DEPTH  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SWALE  SW | SOIL CLASS                                                                                             | LOGIC DESCRIPTION                                               | WELL DIAGRAM                                                           |
| 10 2 60<br>15 3 100<br>20 4 90<br>25 90<br>35 8 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clayey sit, mode trace of organic  TS 86  Clayey sit, dark  ML  Clayey sit, dark  ML  Sandy clay, fine | rate brown to yellowish brown,                                  | To Sch. 40 PVC and 8" steel casing———————————————————————————————————— |

### Monitoring Well 07-MW-5LF Environmental & Safety Designs, Inc. Project: NAS Memoria Location Hangton, TN SHALLET - Building Project No.: NOOB4 Surface Devation: feet inst Started at on 1-09-95 TOC Elevation: feet inst Completed at an 2-21-95 Depth to Groundwater. I eet Measured Orling Method: Rotasanic Groundwater Elevation: feet mail Driling Company: North Star Driling Total Deptit 76.0 feet Geologist Jack Carmichael Hell Screen: 68 to 76 feet GRAPHOC LOG UTHOLOGIC SAPPLE SASS S ANNLYTECH SAMPLE K RECOVER SWALEND PTO tros WELL DIAGRAM GEOLOGIC DESCRIPTION OEPTH NFEET BE. Silty sand, medium, yellowish orange to light SC brown. 45 Sand, medium, micaceous, yellowish orange to 0 light brown. 2" ID, Sch. 40 PVC and 8" steet casing Sand, medium, grayish orange, micaceous. 50 O 55 7 60 86 0 0 0 0 60-0 0 0 65-O Gravelly sand, coarse to very coarse, dark yellowish orange. 0.01 slot, PVC screen 70-O 75 87.5 86 8 Log information taken from the boring for the Cockfield well at SMMU#7 Site 5. 80

| Evs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WE ®                             |                     | Monitoring Well 07-MW-5UC                                                                       |               |                                                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|-------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Environmental &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Safety Des                       | signs, Inc.         |                                                                                                 |               |                                                                                                                                                                                                                              |  |
| Project: NAS Memphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                     | Location: Memphs, TN                                                                            |               |                                                                                                                                                                                                                              |  |
| Project No.: A0094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                     | Surface Devator: feet #sl                                                                       |               |                                                                                                                                                                                                                              |  |
| Started at on 1-09-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                     | TOC Devators feet and                                                                           |               |                                                                                                                                                                                                                              |  |
| Completed at an 2-21-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                     | Depth to Groundwater. feet                                                                      |               | Measured                                                                                                                                                                                                                     |  |
| Orling Method: Rolasonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05.4                             |                     | Groundwater Elevation: feet red Total Depth: ISSO feet                                          |               |                                                                                                                                                                                                                              |  |
| Drilling Company: North Star<br>Geologist: Jack Carrichael                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UNIN                             |                     | Hel Screen 22 to 32 feet                                                                        |               |                                                                                                                                                                                                                              |  |
| DEPTH NFET LITHQUAGE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SA | PTD (spm) GRAPHOC LOG SOIL CLASS | GEOL(               | OGIC DESCRIPTION                                                                                | ELEV. (M-mat) | HELL DIAGRAM                                                                                                                                                                                                                 |  |
| 5 60<br>6 7<br>10 8 90<br>11 12 25 13 14 30 15 90 18 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B6                               | Clayey silt, dark y | ellowish brown, stiff, hard.  Reclium light brown, soft, wet.  I light brown, grayish orange to |               | The Sch. 40 PVC and 8" steel casing  The sch. 40 PVC and 8" steel casing  The sch. 40 PVC and 8" steel casing  The sch. 40 PVC and 8" steel casing  The sch. 40 PVC and 8" steel casing  The sch. 40 PVC and 8" steel casing |  |

| Enviro                               | En nment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al & | Sal                                                                        | FE | Des | signs, Inc.  | Monitoring Well 07-MW-5UC       |              |                                         |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------|----|-----|--------------|---------------------------------|--------------|-----------------------------------------|--|--|
| Project: NA                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                            | -  |     | 19113, 1110. | Location, Hemphis, TN           |              |                                         |  |  |
| Project No.:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                            |    |     |              | Surface Elevations   feet asi   |              |                                         |  |  |
| Started at                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8    |                                                                            |    |     | <del></del>  | TOC Devators feet as            |              |                                         |  |  |
| Completed a                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                            |    |     |              | Depth to Groundwater: feet      |              | Heestrect                               |  |  |
| Orling Metho                         | t Rotas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nc   |                                                                            |    |     |              | Groundwater Elevation: feet ins |              |                                         |  |  |
| Drilling Compa                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Oran                                                                       | 7  |     |              | Total Depth: 135.0 feet         |              |                                         |  |  |
| Geologist: Jack Cannichael           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                            |    |     |              | Well Screen: 22 to 132 feet     |              |                                         |  |  |
| DEPTH<br>NFEET<br>UTHOLOGIC<br>SWALE | SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SA |      |                                                                            |    |     |              | OGIC DESCRIPTION                | ELEV. (R-ma) | WELL DIAGRAM                            |  |  |
| 85-<br>95-<br>100-<br>110-<br>120    | 42<br>43<br>44<br>45<br>48<br>47<br>48<br>49<br>50<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80   | 86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86 |    | SC  | clay lenses. | Mazy, from 119' to 119.5'.      |              | Pinnininininininininininininininininini |  |  |

### Environmental & Safety Designs, Inc. Monitoring Well 07-MW-5UC Project: NAS Memoris Locations Memories, TN Project No.: NOO94 Surface Elevation: leet its! Started at on 1-09-95 TOC Elevation: feet mil Completed at on 2-21-95 Depth to Groundwater: feet Driling Method: Rotasonic Groundwater Elevation: feet its/ Driling Company: North Star Driling Total Depth: 1350 feet Geologist: Jack Carmichael Well Screen: 122 to 132 feet ELEV. (R-ma) ANNEYTICA SAPPLE SASS. X RECOVER SWALEND 8 GEOLOGIC DESCRIPTION DEPTH INFEET 6 63 8G 64 BG SC 125 65 BG 66 86 Clay, dusky brown, waxy, mixed with lightic 130 67 86 CL 68 86

End of boring at 135'.

8G

90

135

140-

145-

150-

155-

160

Measurect

- 0.01 slot, PVC screen

**HELL DIAGRAM** 

| Env      | iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | En ent | al & | Sa    | fety | e<br>y De | signs, Inc.                                            | Monitoring Well 07-MW-65                  |              |                         |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------|------|-----------|--------------------------------------------------------|-------------------------------------------|--------------|-------------------------|--|--|
| Project  | NASH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emore. | 5    |       |      |           |                                                        | Location Minglan, TN SHALL                | 7 - 8.k      | ing N-28                |  |  |
| Project  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |       |      |           |                                                        | Surface Elevation: feet mil               |              |                         |  |  |
| Started  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |       |      |           |                                                        | TOC Elevation: feet ms/                   |              |                         |  |  |
| Complet  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      | 95    |      |           |                                                        | Depth to Groundwater: feet                |              | Heasurect               |  |  |
| Orling P |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |       |      |           |                                                        | Groundwater Elevations leet msi           |              |                         |  |  |
| Orang C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      | Ortin | 9    |           |                                                        | Total Depth: 20.0 feet                    |              |                         |  |  |
|          | GEORGE SAME TICH COOK SAME FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR COOK OF THE FOR |        |      |       |      |           |                                                        | OGIC DESCRIPTION                          | ELEV. (M-ma) | HELL DIAGRAM            |  |  |
| 2        | 7 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8      | ×    | -     | 10   | 1 6       | SR and helph                                           |                                           | -            |                         |  |  |
| 5-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 66   | 86    |      |           | Fill and brick.  Clayey silt, modera with yellow gray. | ite yellowish brown, mottled              |              | bentonite seel of       |  |  |
| 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2      | 70   | 86    |      | ML        |                                                        |                                           |              | - 0.01 slot, PVC screen |  |  |
| 25-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4      | 60   | 86    |      |           | Log information tal<br>Cockfield well at S             | ten from the boring for the MMU#7 site 6. |              |                         |  |  |

### ◉ Monitoring Well 07-MW-6UF Environmental & Safety Designs, Inc. Project: NAS Memphs Location: Mington, TN SWALM7 - Building N-126 Project No.: NOOP4 Surface Elevations feet mail Started at 0820 on 2-10-95 TOC Elevation: feet mal Completed at 1010 on 2-14-95 **Heasured** Depth to Groundwater. feet Orling Method: Rotasano Groundwater Elevation: feet red Orling Company: North Star Driling Total Depth: 55.0 feet Geologist Ben Brantley Well Screen: 40 to 50 feet GRAPHEC LOS ANNITION LITHOLOGIC QASS SWELEND 3 WELL DIAGRAM GEOLOGIC DESCRIPTION BEY. 8 P Fill and brick. 66 86 Clayey silt, moderate yellowish brown, mottled with yellow gray. 10 70 86 40 PVC and 8" steel cealing 15 3 70 86 ML 20-ID. Sch. Clayey silt, olive brown to olive gray, hard, stiff. 25 86 60 Clayey silt, light brown to yellowish brown, medium stiff. 30-5 86 85 Sity clayey sand, fine to very fine, yellowish 35 orange to reddish brown. SC

## Monitoring Well 07-MW-6UF Environmental & Safety Designs, Inc. Project: NAS Nemons Location: Hangton, TN SHAW17 - Building N-128 Project No.: NO094 Surface Elevation: feet ad Started at 0820 on 2-10-95 TOC Devation: feet mal Completed at 1010 on 2-14-95 Depth to Groundwater: feet Heasurect Orling Method: Rotasano Groundwater Elevation: feet mai Driling Company: North Star Driling Total Depth: 55.0 feet Hell Screen: 40 to 50 feet Geologist: Ben Brandley 1 SWALEND SOR CLASS X RECOVER **3** WELL DIAGRAM GEOLOGIC DESCRIPTION CIETH INFEET 6 54 86 SC Sity sand, very fine to fine, traces of clay casts, grayish orange to pale yellowish orange. 55 100 86 Log information taken from the boring for the Cockfield well at SWMU#7 site 6. 60-65-70-75-80

### Monitoring Well 07-MW-6LF Environmental & Safety Designs, Inc. Locators Hangton, TN. SHAU67 - Building N-128 Project: NAS Memories Project No.: N0094 Surface Elevation: feet and Started at 0820 on 2-10-95 TOC Elevation: feet mal Completed at IDIO on 2-H-95 Measured Depth to Groundwater: feet Groundwater Elevations | feet mail Orling Method: Rotasonic Drilling Company: North Star Drilling Total Depth: 78.0 feet Geologist Ben Brandley Hel Screen: 87 to 77 feet ANNLYTICAL SAPLE 228 X RECOVER SWALEND Ì HELL DIAGRAM GEOLOGIC DESCRIPTION BEY. Fill and brick. **B**6 66 Clayey sit, moderate yellowish brown, mottled with yellow gray. 70 86 10, Sch. 40 PVC and 8" steel casing 15 3 70 86 ML 20 Clayey sit, olive brown to olive gray, hard, stiff. 25 86 60 Clayey silt, light brown to yellowish brown, medium stiff. 30 86 5 85 Sity clayey sand, fine to very fine, yellowish 35 orange to reddish brown. SC

### Monitoring Well 07-MW-6LF Environmental & Safety Designs, Inc. Location: Mington, TN SHALM7 - Building N-126 Project: NAS Memoris Project No.: NOOS4 Surface Elevation: leet mail Started at 0820 on 2-10-95 TOC Devators feet ad Completed at 1010 on 2-14-85 **Heasured** Depth to Groundwater: feet Orling Method: Rotasano Groundwater Elevation: feet msi Total Deptit 78.0 feet Driling Company: North Star Driling Well Screen: 67 to 77 feet Geologist Ben Brantley QASS 3 HELL DIAGRAM GEOLOGIC DESCRIPTION BE. 86 54 Sity sand, very fine to fine, traces of clay casts, grayish orange to pale yellowish orange. SC 2" 10, Sch. 40 PVC and 8" steet casing BG ( 55 7 100 Sand, fine to coarse, pale yellowish brown to moderate yellowish brown. 60 70 65 86 G₽ 0.01 slot, PVC screen 70 75 0 100 BG Log information taken from the boring for the Cockfield well at SWMU#7 site 6.

### Monitoring Well 07-MW-6UC Environmental & Safety Designs, Inc. Project: NAS Hemphs Location: Mindlon TN SHAU67 - Building N-126 Project No.: NOOS4 Surface Elevation: feet insi Started at 0820 on 2-10-95 TOC Elevation: feet mal Completed at IDID on 2-14-95 Depth to Groundwater: feet Devese Orling Method Rotasonic Groundwater Elevation: feet mail Orling Company: North Star Orling Total Depth: IDIO leet Geologist: Ben Brantley Well Screen: 84.5 to 94.5 feet Ī ANNETICAL LITHOLOGIC X RECOVER SOR GLASS 70 CO **HELL DIAGRAM** DEPTH NFEET GEOLOGIC DESCRIPTION ee. Fill and brick. 66 Clayey silt, moderate yellowish brown, mottled with yellow gray. 86 1 2 86 3 86 70 86 BG 2" 10, Sch. 40 PVC and 6" steel casing 15 8 70 86 7 86 ML 8 86 20 86 86 Clayey silt, olive brown to olive gray, hard, stiff. 25 Ħ 60 86 12 86 Clayey silt, light brown to yellowish brown, 13 86 medium stiff. 30 14 86 85 15 86 Sity clayey sand, fine to very fine, yellowish 35 18 86 orange to reddish brown.

86

86

SC

| Environmental & Safety Designs, Inc. |                                                               |   |    |     |      |             |           |                     | Monitoring Well 07-MW-6UC                                                     |        |                                                          |  |  |
|--------------------------------------|---------------------------------------------------------------|---|----|-----|------|-------------|-----------|---------------------|-------------------------------------------------------------------------------|--------|----------------------------------------------------------|--|--|
|                                      | Project: NAS Nempris                                          |   |    |     |      |             |           |                     | Location Ministro TN CHAIM                                                    | 7 - A- | ing N-26                                                 |  |  |
|                                      | Project No.: A0094                                            |   |    |     |      |             |           |                     | Location: Allington, TN: SHALIF7 - Building N-128 Surface Elevation: feet msl |        |                                                          |  |  |
|                                      | Started at 0820 on 2-10-95                                    |   |    |     |      |             |           |                     | TOC Elevation: feet rist                                                      |        |                                                          |  |  |
|                                      | peter                                                         |   | _  |     |      |             |           |                     | Depth to Groundwater: feet                                                    |        | Heasured                                                 |  |  |
|                                      | ing Met                                                       |   |    |     |      |             |           |                     | Groundwater Elevations feet mist                                              |        |                                                          |  |  |
|                                      |                                                               |   |    |     | Orin | 0           |           |                     | Total Depth: 1010 feet                                                        |        |                                                          |  |  |
|                                      | Drilling Company: North Star Drilling Geologist: Ben Brantley |   |    |     |      |             |           |                     | Hel Screen: 845 to 945 feet                                                   |        |                                                          |  |  |
| OEPTH<br>INFEET                      | N 12                                                          |   |    |     |      |             | SOL CLASS | GEOLG               | OGIC DESCRIPTION                                                              |        |                                                          |  |  |
|                                      | 1                                                             |   | 10 |     | BG   | 33          |           |                     |                                                                               |        |                                                          |  |  |
|                                      | V                                                             |   |    |     |      | (5,0)       |           |                     |                                                                               | 1      |                                                          |  |  |
|                                      | łΛi                                                           |   | 20 |     | 86   | 33          |           |                     |                                                                               |        | and 8" steet casing ———————————————————————————————————— |  |  |
|                                      | <b>/</b> /                                                    |   |    |     |      | 4.4         |           |                     |                                                                               |        |                                                          |  |  |
| 45-                                  |                                                               |   | 21 | 54  | BG   | 757         |           |                     | ne to fine, traces of clay                                                    |        |                                                          |  |  |
|                                      | 1\ /                                                          |   |    |     |      | 2           |           | casts, grayish orar | nge to pale yellowish orange.                                                 | 1      |                                                          |  |  |
| ĺ                                    | 1\ /I                                                         |   | 22 |     | 86   | 200         | sc        |                     |                                                                               | ì      |                                                          |  |  |
| i                                    | 1 V I                                                         |   | 23 | 1   | 86   |             |           |                     |                                                                               | 1      |                                                          |  |  |
| 50-                                  | 1 Y I                                                         |   | •  | 1   | 60   | 722         |           |                     |                                                                               | 1      |                                                          |  |  |
| "                                    | 1 A I                                                         |   | 24 | l   | 86   | 22.5        |           |                     |                                                                               | 1      |                                                          |  |  |
| 1                                    | {/\}                                                          |   |    | l   |      |             |           |                     |                                                                               |        |                                                          |  |  |
| 1                                    | {/ \{                                                         |   | 25 | 1   | 86   | 2           |           |                     |                                                                               | 1      |                                                          |  |  |
|                                      | V                                                             |   |    | 1   |      | 2.75        |           |                     |                                                                               |        | 2                                                        |  |  |
| 55-                                  | 1                                                             |   | 26 | 100 | 86   | W a         |           | Sand, fine to coars | se, pale yellowish brown to                                                   | 1      |                                                          |  |  |
| 1                                    | N /                                                           |   | 27 | l   |      | 0           |           | moderate yellowish  | •                                                                             | 1      |                                                          |  |  |
|                                      | 1\ /I                                                         |   | 2/ | l   | 96   | 0           |           |                     | •                                                                             |        |                                                          |  |  |
| }                                    | W                                                             |   | 28 | l   | 86   | 0           | *         |                     | •                                                                             |        | miniminiminiminiminul                                    |  |  |
| 60-                                  | Y                                                             |   |    |     | ٦    | 0           |           |                     |                                                                               |        | orout                                                    |  |  |
|                                      | 1 N I                                                         |   | 29 |     | 86   |             |           |                     |                                                                               |        |                                                          |  |  |
|                                      | {/\l                                                          |   |    |     |      | 03          |           |                     |                                                                               |        | 9 8 8                                                    |  |  |
|                                      | // \l                                                         |   | 30 |     | 86   | O           |           |                     |                                                                               |        | £ 8 8                                                    |  |  |
|                                      | y Y                                                           |   |    |     |      | 5           |           |                     |                                                                               |        | miniminiminiminiminiminiminiminiminimin                  |  |  |
| 65-                                  |                                                               |   | 31 | 70  | 86   | $\sigma$    |           |                     |                                                                               |        |                                                          |  |  |
|                                      | N /I                                                          |   | 32 |     | 86   | 0           | GP        |                     |                                                                               |        |                                                          |  |  |
|                                      | I\ /I                                                         |   | ~  |     | 33   | 0           |           |                     |                                                                               |        |                                                          |  |  |
|                                      | V                                                             |   | 33 |     | 86   | 10          |           |                     |                                                                               |        |                                                          |  |  |
| 70-                                  |                                                               |   |    |     |      | V 9         |           |                     |                                                                               | }      |                                                          |  |  |
| 1                                    | $  \wedge  $                                                  |   | 34 |     | 86   | 6           |           |                     |                                                                               |        |                                                          |  |  |
| 1                                    | I/ \I                                                         |   |    |     |      | و <u>را</u> |           |                     |                                                                               |        |                                                          |  |  |
|                                      | / V                                                           |   | 35 |     | 86   | 0           |           |                     |                                                                               |        |                                                          |  |  |
| 75-                                  |                                                               |   | 36 | 100 | 86   | 6 1         |           |                     |                                                                               |        |                                                          |  |  |
|                                      | <b>N</b> 7                                                    |   | ~  |     |      | 0           |           |                     |                                                                               |        |                                                          |  |  |
| ,                                    | IVI                                                           |   | 37 |     | 86   | <b>1</b> 9  |           |                     |                                                                               |        |                                                          |  |  |
|                                      | ΙĂΙ                                                           |   |    |     |      | 1/4         |           |                     | laginated, pale yellowish                                                     |        |                                                          |  |  |
|                                      | ΙV                                                            | ļ | 38 |     | 86   | 20          | SC        | orange to dark ye   | -                                                                             |        |                                                          |  |  |
| 80-                                  |                                                               |   |    |     |      | 777         |           | Sity clay with fine | sand, light brownish gray to                                                  |        | T   ST   T                                               |  |  |

### Monitoring Well 07-MW-6UC Environmental & Safety Designs, Inc. Project: NAS Memoria Location: Mington, TN SHMUNT - Building N-26 Project No.: NOOP4 Surface Elevation: feet insi Started at 0820 on 2-10-95 TOC Elevation: feet msi Completed at 1010 on 2-14-95 Heasured Depth to Groundwater: feet Drilling Method: Rotasanic Groundwater Elevation: feet msl Orling Company: North Star Driling Total Depth: 1010 feet Geologist Ben Brantley Well Screen: 84.5 to 94.5 feet BEV. (R-mad AWLYTICA SAFILE CASS SWALEND X RECOVER WELL DIAGRAM GEOLOGIC DESCRIPTION DEPTH £ 86 40 **B**6 85 41 ØG 109 42 86 SC 43 86 44 BG **B**6 Clay, interbedded very fine sand with silt, 48 **B6** becoming more waxy. 120 47 86 CL 48 86 100-49 120 8G End of boring 105 110-115-120

| E                  | nvir                                                          |            |         | al &       |            | <b>FE</b> fety | De        | signs, Inc.                                | Monitoring Well 07-MW-7S                      |            |                                        |  |  |
|--------------------|---------------------------------------------------------------|------------|---------|------------|------------|----------------|-----------|--------------------------------------------|-----------------------------------------------|------------|----------------------------------------|--|--|
|                    |                                                               | VAS M      |         |            |            | <u>_</u>       |           |                                            | Location: Mington, TN SHMW17 - Building N-128 |            |                                        |  |  |
| Project No.: ACCOM |                                                               |            |         |            |            |                |           |                                            | Surface Elevations feet and                   |            |                                        |  |  |
| Sta                | Started at 1750 on 2-10-95                                    |            |         |            |            |                |           |                                            | TOC Elevation: feet asi                       | ***        |                                        |  |  |
| Com                | plete                                                         | at o       | n 2-1   | 1-95       |            | _              |           |                                            | Depth to Groundwater: feet                    |            | Measured                               |  |  |
| 0.4                | Completed at an 2-14-95 Drilling Method: Rotasanic            |            |         |            |            |                |           |                                            | Groundwater Elevation: feet mil               |            |                                        |  |  |
| Dr6                | ng Cor                                                        | TOATY      | Non     | h Sta      | Oran       | 9              |           |                                            | Total Depth: 20.0 feet                        |            |                                        |  |  |
| Geo                | Drilling Company: North Star Drilling Geologist: Ben Brantley |            |         |            |            |                |           |                                            | Well Screen: IQO to 2QO feet                  |            |                                        |  |  |
| OGPTH<br>NFEET     | LTHOLOGIC                                                     | ANALYTICAL | SWELEND | X RECOVERY | PTD (spen) | GRAPHOC LOB    | SOL CLASS | Œ0.c                                       | OGIC DESCRIPTION                              | BEV. (N-md | HELL DIAGRAM                           |  |  |
| 5-                 | X                                                             |            | 1       | 70         | 86         |                | ML        | Clayey sit, modera<br>motited with yellow  | ite yellowish brown, organics, ish gray sät.  |            | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |  |  |
| <b>15-</b> -       |                                                               |            | 3       | 80         | <b>B6</b>  |                |           | moist.                                     | ive gray to olive brown, soft,                |            | 0.01 slot, PVC screen                  |  |  |
|                    |                                                               |            |         |            |            |                |           | Log information tal<br>Cockfield well at S | ten from the boring for the                   |            |                                        |  |  |
| 25-                |                                                               |            | . 4     | 65         | 96         |                |           |                                            |                                               |            |                                        |  |  |
| 30-                |                                                               |            |         |            |            |                |           |                                            |                                               |            |                                        |  |  |
| 35-                |                                                               |            |         |            |            |                |           |                                            | •                                             |            |                                        |  |  |

### Monitoring Well 07-MW-7UF Environmental & Safety Designs, Inc. Location: Manglon, TN SHALM7 - Building N-26 Project NAS Memoris Project No.: NOOP4 Surface Elevation: feet mil Started at 1750 on 2-10-06 TOC Elevation: feet and Completed at on 2-14-95 Deoth to Groundwater: feet Measured Driling Method: Rotasonic Groundwater Elevation feet ms Orling Company: North Star Driling Total Deptit: 50.0 feet Geologist: Ben Brandley Hel Screen: 400 to 500 feet 1 ANN YTECH SWPLE QASS SWEEN X RECOVER 200 WELL DIAGRAM GEOLOGIC DESCRIPTION EE. 8 Clayey silt, moderate yellowish brown, organics, mottled with yellowish gray silt. 125 86 ١ Ю 2 70 86 and 6" steet casing 3 15 80 86 Clayey sit, light olive gray to olive brown, soft, moist. 20 ğ 25 65 86 Sity clay, light brown to moderate yellowish brown. 30-35 5 90 86 Silty sand, moderate yellowish brown to dark yellowish orange, stained reddish brown. SC GP Sand, fine to medium, sitty, grayish orange to dark yellowish orange, at 39' there is some gray sand

## Monitoring Well 07-MW-7UF Environmental & Safety Designs, Inc. Locations Hangton, TN SHAW7 - Building N-128 Project NAS Hempha Project No.: NOO94 Surface Devatort feet mail Started at 1750 on 2-10-95 TOC Elevation: feet as Completed at on 2-14-95 Heesurect Depth to Groundwater: feet Orling Method: Rotasano Groundwater Elevations feet and Drilling Company: North Star Drilling Total Depth: 500 feet Geologist: Ben Brandley Hel Screen: 40.0 to 50.0 feet 5 SOIL CLASS X RECOVER 3 HELL DIAGRAM GEOLOGIC DESCRIPTION O 0.01 slot, PVC screen 86 110 GP 50 Log information taken from the boring for the Cockfield well at SMMU#7 site 7. **55**· 7 90 **B6** 60-65-70-75-

#### Monitoring Well 07-MW-7UC Environmental & Safety Designs, Inc. Locator: Mington, TN SHALM7 - Building N-128 Project: NAS Memoris Project No.: NOOS4 Surface Elevation: feet inst Started at 1750 on 2-10-95 TOC Devators leet mil Completed at on 2-14-95 Measured Depth to Groundwater: feet Orling Method: Rotasano Groundwater Elevation: feet mil Drilling Company: North Star Onling Total Depth: 105.0 feet Geologist: Ben Brantley Well Screen: 925 to 1025 feet 1 288 ANNLYTICA SAPILE RECOVER SWALEND 3 HELL DIAGRAM GEOLOGIC DESCRIPTION DEPTH INFEET E. 2 Clayey sit, moderate yellowish brown, organics, nottled with yellowish gray sat. 1 0.4 2 86 125 3 **B6** 86 5 70 86 86 7 86 80 Clayey sit, light olive gray to olive brown, soft, 86 Boist. MŁ 86 Ş 40 PVC 20 10 86 Ħ 86 10, Sch. 12 86 25 65 13 86 **B6** Sity clay, light brown to moderate yellowish prown. 30 15 86 ununununununununun 16 86 17 86 35 90 Sity sand, moderate yellowish brown to dark 86 yellowish orange, stained reddish brown. SC

Sand, fine to medium, sitty, grayish orange to dark yellowish orange, at 39" there is some gray

10

86

GP

| E                        | Envir             |            |         | <b>7</b>   |            | FEE<br>ety  |           | igns, Inc.                                                    | Monitoring Well                                                                                      |             |              |
|--------------------------|-------------------|------------|---------|------------|------------|-------------|-----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|--------------|
| Pro                      | ect N             | AS NE      | mons    |            |            |             |           |                                                               | Location Mington TN SHALM                                                                            | 7 - Buld    | ng N-86      |
|                          | ect No.           |            |         |            |            |             |           | ···                                                           | Surface Elevators feet mal                                                                           |             |              |
|                          | rted at           |            |         |            |            |             |           |                                                               | TOC Elevation: feet and                                                                              |             | Measured     |
|                          | peted             |            |         |            |            | ···         |           |                                                               | Depth to Groundwater. feet                                                                           |             |              |
|                          | ng Meth<br>ng Com |            |         |            | <u> </u>   |             |           |                                                               | Groundwater Elevation: feet mail Total Depth: 77.0 feet                                              |             |              |
|                          | ologist           |            |         |            | U          | <u>/</u>    |           |                                                               | Hel Screen: 68.0 to 78.0 feet                                                                        |             |              |
| DEPTH                    | T                 | ANNLYTICAL | SWELEND | X RECOVERY | PTO (spen) | GRAPHOC LOG | SOR CLASS | GEOL(                                                         | OGIC DESCRIPTION                                                                                     | BEV. (n-mal | WELL DIAGRAM |
| 45-<br>50-<br>55-<br>70- |                   |            | 8       | 110        | B6<br>B6   |             |           | grayish orange to<br>Sand with interdis<br>grained. Clay is p | line to very coarse grained, dark yellowish orange.  bursed clay, fine to medium inkish gray, moist. |             |              |
| 80-                      | 1                 |            |         |            |            |             |           | Cockfield well at                                             |                                                                                                      |             |              |

#### Monitoring Well 07-MW-7UC Environmental & Safety Designs, Inc. Project: NAS Memphs Location: Mington, TN SHALM7 - Building N-128 Project No.: NOOS4 Surface Elevation: feet mil Started at 1750 on 2-10-95 TOC Elevation: feet inst Completed at an 2-14-95 Depth to Groundwater: feet Measured Draing Method Rolasonic Groundwater Elevation: feet mil Drilling Company: North Star Drilling Total Depth: 105.0 feet Geologist: Ben Brantley Well Screen: 925 to 1025 feet 1 m THATALIENT STANFE TURNOTORIE TURNOTORIE GRAPHEC LOG QASS SWELEND B GEOLOGIC DESCRIPTION WELL DIAGRAM DEPTH EE. 8 2 Clayey sift, moderate yellowish brown, organics, mottled with yellowish gray sit. 1 0.4 2 86 125 3 86 86 Ю 5 70 86 86 2" 10, Sch. 40 PVC and 8" steet casing 7 86 80 Clayey sit, light olive gray to olive brown, soft, 8 86 Boist. ML 9 **B**6 20 10 86 11 86 12 86 25 65 IJ 96 86 Silty clay, light brown to moderate yellowish brown. 30 15 96 16 86 17 86 35 90 Sity sand, moderate yellowish brown to dark 18 86 yellowish orange, stained reddish brown. SC

Sand, fine to medium, silty, grayish orange to dark yellowish orange, at 39' there is some gray

10

**B6** 

GP

#### Monitoring Well 07-MW-7UC Environmental & Safety Designs, Inc. Location Hangton, TN SHALM7 - Building N-126 Project NAS Memoris Project No.: NOOS4 Surface Elevators leet ad Started at 1750 on 2-10-95 TOC Elevation: leet mail Completed at on 2-M-95 Measured Depth to Groundwater: feet Groundwater Elevation: leet inst Orling Method: Rotasonic Total Depth: IDSO feet Drilling Company: North Star Orlling Well Screen: 925 to 1025 feet Geologist: Ben Brantley AWLTER GRAPHEC LOG LITHOLOGIC SOIL CLASS Ī X RECOVER HELL DIAGRAM GEOLOGIC DESCRIPTION DEFTH BE. 20 **8**6 0 86 21 45 22 110 8G 23 86 86 50 25 86 28 2" 10, Sch. 40 PVC and 8" steel casing 55. 27 90 86 28 86 10 20 GP 60-0 30 86 0 Sand and gravel, fine to very coarse grained, grayish orange to dark yellowish orange. 31 **B6** 85 32 110 86 33 86 86 70-35 86 Sand with interdisbursed clay, fine to medium grained. Clay is pinkish gray, moist. 36 86 37 95 86 38 86 30 8G Sand, interbedded with clay, grayish orange, then becomes sifty sand, very fine grained, clay is dack vellowish orange

#### Environmental & Safety Designs, Inc. Monitoring Well 07-MW-7UC Project: NAS Memoria Location: Mington, TN SHAUF7 - Building N-126 Project No.: NOOS4 Surface Elevation: leet mail Started at 1750 on 2-10-95 TOC Elevation: feet ast Completed at on 2-14-95 Heasured Depth to Groundwater. feet Orling Hethod: Rotasonic Groundwater Elevation: feet and Orling Company: North Star Driling Total Depth: 106.0 feet Geologist: Ben Brandley Well Screen: 925 to 1025 feet T E AMLYTICA SAFLE **CASS** SWALEND X RECOVER 3 WELL DIAGRAM GEOLOGIC DESCRIPTION DEPTH NFEET BEY. 2 2" 10, Sch. 40 PVC and 8" steel casing 86 BG 85 100 42 Silty sand, with interbedded clay, very fine sand, dusky yellowish brown clay to moderate brown, mottled with light olive to olive gray sand. 43 BG BG 45 86 SC 48 86 0.01 slot, PVC screen 120 86 48 86 49 **B6** 100-50 **B**6 Clay, laminations of sand, dusky yellowish brown 51 86 to moderate brown clay, light office to office gray CL sand, waxy. 105 115 86 End of boring at 105'. 110 115 120

## Monitoring Well 07-MW-8UF

| E                   | Envir                | onm                | ent     | al &            | Sa             | fet         | y Do                                      | esigns, Inc.                                                                                                                                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|---------------------|----------------------|--------------------|---------|-----------------|----------------|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Pro                 | ect A                | MSM                | enore:  | ,               |                |             |                                           |                                                                                                                                                                                                          | Location Minglan TN SHALM                           | 7 - Buk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing N-28     |
|                     | ect No               |                    |         |                 |                |             |                                           |                                                                                                                                                                                                          | Surface Elevators   feet msf                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                     | rted at              |                    |         |                 |                |             |                                           |                                                                                                                                                                                                          | TOC Devators feet red                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                     | pleted               |                    |         |                 | <b>26</b>      |             |                                           |                                                                                                                                                                                                          | Depth to Groundwater: feet                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heasured     |
|                     | ng Met               |                    |         |                 |                |             |                                           |                                                                                                                                                                                                          | Groundwater Devators leet mai                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                     | ng Com               | _                  | _       |                 | Drin           | 9           |                                           |                                                                                                                                                                                                          | Total Depth: 45 feet                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Geo                 | logst                | Dawo               | Lack    | <del>!</del>    |                | _           |                                           |                                                                                                                                                                                                          | Hel Screen: 360 to 460 feet                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| OBPTH<br>NFEET      | LITHOLOGIC<br>SAPPLE | AWLYTICAL<br>SAPLE | SMPLEND | * PECOVERY      | PD (ton)       | COLANGE LOG | SOR O ASS                                 | GEOL                                                                                                                                                                                                     | OGIC DESCRIPTION                                    | BEV. (N-ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HELL DIAGRAM |
| 5<br>10<br>25<br>35 |                      | ARS .              | 3 3     | 140<br>96<br>85 | 86<br>86<br>86 |             | 55 ML 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Clayey sit, yellowing gray.  Clayey sit, noive gray.  Clayey sit, olive gray.  Sit, light olive gray.  Sandy sit, moderate to lift.  Sandy sit, moderate sand, fine, dark yellowing grayish orange, sit. | te yellowish brown.  Howish orange mottled with ty. | TO TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF |              |
| 40                  | $\triangle$          |                    |         |                 |                | 70          | 4                                         |                                                                                                                                                                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

# ENSIFE © Domental & Safety Designs Inc.

## Monitoring Well 07-MW-8UF

| 8             | Envir      | OUM                  | ent     | al &       | Sa         | fety        | De         | signs, Inc.                                |                                              |              |                                        |
|---------------|------------|----------------------|---------|------------|------------|-------------|------------|--------------------------------------------|----------------------------------------------|--------------|----------------------------------------|
|               | ect /      |                      |         |            |            | <u>`</u>    |            |                                            | Location Hington, TN SHALIF                  | - But        | ng H-28                                |
|               | ect N      |                      |         |            |            |             |            |                                            | Surface Elevation: feet asi                  |              |                                        |
|               | rted a     |                      |         |            |            |             |            |                                            | TOC Elevation: feet rel                      |              |                                        |
|               | pletec     |                      |         |            | <b>9</b> 5 |             |            |                                            | Depth to Groundwater: feet                   |              | Measured                               |
|               | ng Mel     |                      |         |            |            |             |            |                                            | Groundwater Elevation: feet mai              |              |                                        |
|               | ng Con     |                      |         |            | Orth       | 9           |            |                                            | Total Depth: 45 feet                         |              | <del></del>                            |
| Geo           | logst:     | Daws                 | Lade    | <u>'</u>   | _          |             |            | · · · · · · · · · · · · · · · · · · ·      | Hel Screen: 360 to 460 feet                  |              |                                        |
| OBTH<br>NFEET | LITHOLOGIC | ANNLYTICAL<br>SAMPLE | SWALEND | X RECOVERY | (wod) CLA  | BRANDIC LOS | SOIL CLASS | G€OL(                                      | OGIC DESCRIPTION                             | BEV. (II-ma) | WELL DIAGRAM                           |
| 45-           | $\bigvee$  |                      | 7       | 80         | BG         | 0000        | GP         | Log information tal<br>Cockfield well at S | ken form the boring for the<br>WMU#7 site 8. |              | 11111111111111111111111111111111111111 |
| 50-           |            |                      |         |            |            |             |            |                                            | ·                                            |              |                                        |
| 55-           |            |                      |         | 5          |            |             |            |                                            |                                              |              | ·                                      |
| 60-           |            |                      |         |            |            |             |            |                                            |                                              |              |                                        |
| 65-           |            | ٠                    |         |            |            |             |            |                                            |                                              |              |                                        |
| 70-           |            |                      |         |            |            |             |            |                                            |                                              |              |                                        |
| 75-           |            |                      |         |            |            |             |            |                                            |                                              |              |                                        |
| 80-           |            |                      |         |            |            |             |            |                                            |                                              |              |                                        |

| Project: NAS Memorias  Location: Affingtion TN SMAUNT - Building N-28  Project Not: A0094  Surface Elevation: feet asi  TOC Elevation: feet asi  Competed at 0000 on 2-3-95  Competed at 0000 on 2-3-95  Drilling Method: Anivasianic  Drilling Company: North Star Drilling  Geologist: David Ladd  Red Screen: 68.0 to 78.0 feet  GEOLOGIC DESCRIPTION  Light Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start St  | E                | <br>Invir |                     |         | ZS<br>al & |             | <i>F</i>    | • Des      | signs, Inc.                                                                                                                                      | Monitoring Well                                                                          | 07-          | MW-8LF       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|---------------------|---------|------------|-------------|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|--------------|
| Started at 0000 on 2-8-85  Completed at 200 on 2-24-65  Depth to Groundwater: feet and  Drilling Method: Rotasonic  Groundwater Elevation: feet and  Drilling Method: Rotasonic  Groundwater Elevation: feet and  Total Depth: 76 feet  Geologist: Dento Ladd  Med Screen: 88.0 to 78.0 feet  Geologist: Dento Ladd  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  Clayery salt, yellowish brown, mottled yellowish gray.  Clayery salt, woderate brown, most, soft.  Clayery salt, noderate brown, most, soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |           |                     | _       |            |             |             |            |                                                                                                                                                  | Location Hington TN SHALL                                                                | 17 - Buld    | ng N-28      |
| Completed at \$20 on 2-24-96  Displication of Groundwater feet Measured  Displication Antasonic  Displication Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Displication of Antasonic  Groundwater Elevation feet as an antasonic  Feet as an antasonic  Groundwater Elevation feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an antasonic  Feet as antasonic  Feet as an antasonic  Feet as an antasonic  Feet as an |                  |           |                     |         |            |             |             |            |                                                                                                                                                  | Surface Elevation: feet asi                                                              |              |              |
| Drilling Method: Rotasonic Groundwater Elevation: Reet ass  Drilling Company: North Star Drilling  Geologist: Devid Ladd Met Screen: 88.0 to 78.0 feet  Heat Screen: 88.0 to 78.0 feet  Heat Screen: 88.0 to 78.0 feet  Heat Screen: 88.0 to 78.0 feet  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIP  | Sta              | ned at    | 0900                | on 2    | -1-95      |             |             |            |                                                                                                                                                  | TOC Elevation: feet risk                                                                 |              |              |
| Drilling Company: North Star Drilling  Geologist: Dawid Leadd  Ned Screet: 68.0 to 78.0 feet  Ned Screet: 68.0 to 78.0 feet  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGI  | Com              | pieted.   | at P                | O on a  | 2-24-      | <b>9</b> 6  |             |            |                                                                                                                                                  | Depth to Groundwater: feet                                                               |              | Heasted      |
| GEOLOGIC DESCRIPTION  HELL DIAGRAM  Clayey salt, wellowish brown, moist, soft.  Clayey salt, moderate brown, moist, soft.  Clayey salt, olive gray, medium stiff to soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Or B             | ng Meth   | noct /              | Potas   | anc        |             |             |            |                                                                                                                                                  | Groundwater Elevation: feet ins                                                          |              |              |
| THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE DIAGRAM  THE D  |                  |           |                     |         |            | Oran        | 9           |            |                                                                                                                                                  |                                                                                          |              |              |
| 1 140 BG Clayey salt, yellowish brown, mottled yellowish gray.  Clayey salt, moderate brown, moist, soft.  2 98 BG ML Clayey salt, olive gray, medium stiff to soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Geo              | logst (   | Down                | Lado    | 1          |             |             |            |                                                                                                                                                  | Well Screen: 66.0 to 78.0 feet                                                           |              |              |
| Clayey silt, yellowish brown, mottled yellowish gray.  Clayey silt, moderate brown, moist, soft.  2 98 86  ML Clayey silt, olive gray, medium stiff to soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH<br>NFEET   | LINGLOSIC | AWLYTICAL<br>SAMPLE | SWELEND | X RECOVERY | PTD (Score) | GRAPHIC LOG | SOIL GLASS | GEOL(                                                                                                                                            | OGIC DESCRIPTION                                                                         | BEV. (fi-ma) | WELL DIAGRAM |
| T T T I I I I NIN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-<br>10-<br>20- |           | ₹ 3                 | 1 2 3   | 98 85      | B6 B6 B6    | 000         | ML         | Clayey sit, anders Clayey sit, olive gr Sit, light olive gray Sit, moderate to light Sandy sit, moderate Sand, fine, dark ye grayish orange, sit | ray, medium stiff to soft.  y with brown motting.  ght brown, hard.  te yellowish brown. |              | 40 PVC       |

#### Monitoring Well 07-MW-8LF Environmental & Safety Designs, Inc. SHALWY - BUILDING N-28 Project: NAS Memoria Location Mangton TN Project No.: N0094 Surface Elevation: feet ma Started at 0900 on 2-#-95 TOC Elevation: feet ad Completed at PID on 2-24-95 Measured Depth to Groundwater. feet Orling Method: Rotasonic Groundwater Elevation: feet mail Orling Company: North Star Drling Total Depth: 76 feet Geologist David Ladd Well Screen: 86.0 to 76.0 feet GRAPHEC LOG ANN YTECH SAPPLE K RECOVERY SOIL QASS SWALE SWALEND 70 CO WELL DIAGRAM GEOLOGIC DESCRIPTION <u>6</u> 0 7 80 BG Sand, fine, grayish orange to dark yellowish orange, wet, scattered gravel. O 2" ID, Sch. 40 PVC and 8" steel casing 55 96 86 7 60 0 Sand and gravel, fine to very coarse grained, grayish orange to dark yellowish orange, gravel. O 65 9 90 86 0.01 slot, PVC screen 70 75 10 0 Ю 90 BG Log information taken form the boring for the Cockfield well at SMMU#7 site & 80

|                  |                         |                      | Ē          | 7          |                | FE          | •          |                                             | Log of Monitor                     | ng W           | ell 07-MW-8U    |
|------------------|-------------------------|----------------------|------------|------------|----------------|-------------|------------|---------------------------------------------|------------------------------------|----------------|-----------------|
| [                | Envir                   | onn                  | nent       | :al &      | Sa             | fety        | / De       | signs, Inc.                                 |                                    |                |                 |
|                  | ject: /                 |                      |            |            |                |             |            | <del></del>                                 | Location: Mangton, TN SHMU         | 17 - Buk       | ing N-126       |
|                  | ject No                 |                      |            |            |                |             |            | · · · · · · · · · · · · · · · · · · ·       | Surface Elevation: feet ms/        |                |                 |
| Sta              | rted a                  | t <i>090</i>         | 0 on 2     | ?-11-9:    | 5              |             |            |                                             | TOC Elevation: feet msl            |                |                 |
| Con              | npletec                 | 1 at 12              | 10 an      | 2-24-      | <b>.95</b>     |             |            |                                             | Depth to Groundwater: feet         |                | Measurect       |
| Dr               | ing Met                 | hod:                 | Rotas      | ionic      |                |             |            |                                             | Groundwater Elevation: feet ms     | <i>I</i>       |                 |
|                  | ing Con                 |                      |            |            | Drillin        | 9           |            |                                             | Total Depth: 125 feet              |                | <u> </u>        |
| Geo              | ologist:                | Davio                | 1 Lack     | 1          |                | _           |            |                                             | Well Screen: 113.5 below grade to  | T              | elow grade feet |
| DEPTH<br>IN FEET | LITHOLOGIC              | ANALYTICAL<br>SAMPLE | SAMPLE NO. | X RECOVERY | PIO (ppm)      | GRAPHIC LOG | SOIL CLASS | GEOLG                                       | OGIC DESCRIPTION                   | ELEV. (ft-mst) | WELL DIAGRAM    |
|                  |                         |                      | 1          |            | BG<br>BG       |             |            | Clayey silt, yellowi<br>gray.               | sh brown, mottled yellowish        |                |                 |
| 5-               | X                       |                      | 3          | 140        | 86<br>86<br>86 |             |            | Clayey silt, modera                         | ate brown, moist, soft.            |                |                 |
| 10-              |                         |                      | 5          | 98         | BG             |             |            |                                             |                                    |                |                 |
|                  |                         |                      | 6          |            | BG             |             |            |                                             |                                    |                |                 |
| 15-              |                         |                      | 7<br>8     | 98         | BG<br>BG       |             |            |                                             |                                    |                | steel casing    |
|                  | $\bigvee$               |                      | 9          |            | BG             |             | ML         | Clayey silt, olive g                        | ay, medium stiff to soft.          |                | and 8" st       |
| 20-              |                         | 4                    | 10         |            | BG<br>BG       |             |            | Silt, light olive gray                      | / with brown mottling.             | -              | Sch. 40 Pv(     |
| 25-              |                         |                      | •          | 85         |                |             |            | Silt, moderate to li                        | ght brown, hard.                   |                | — 2" 10, Sch.   |
| }                | X                       |                      | 13         |            | BG<br>BG       |             |            |                                             |                                    |                |                 |
| 30-              | $\langle \cdot \rangle$ |                      | 14         | 80         | BG<br>BG       |             |            | Conductive and                              | la vallaviah has va                |                |                 |
| 1                | X                       |                      | 16         |            | BG             | $\prod$     |            | Sandy silt, modera                          |                                    |                |                 |
| 35               | $\langle \rangle$       |                      | 17         | 120        | BG             | 0 0 0       |            | Sand, fine, dark ye<br>grayish orange, sill | flowish orange mottled with<br>ly. |                |                 |
| 1                | $\bigvee$               |                      | 18         |            | ВG             | 0<br>0<br>0 | GP         | Sand, pale yellowis                         | h brown.                           |                |                 |
| 40               |                         |                      | 19         |            | BG             | 700         |            |                                             |                                    |                |                 |



# Log of Monitoring Well 07-MW-8U

| [                | Envir                | onm                  | en         | tal (        | S Sa      | ifety       | De           | signs, Inc.                                |                                               |               |                                                                 |
|------------------|----------------------|----------------------|------------|--------------|-----------|-------------|--------------|--------------------------------------------|-----------------------------------------------|---------------|-----------------------------------------------------------------|
|                  | ect: /               |                      | _          |              |           |             |              |                                            | Location: Mangton, TN SHMU                    | 7 - Bul       | dng N-126                                                       |
|                  | ject No              |                      |            |              |           |             |              |                                            | Surface Elevation: feet msl                   |               |                                                                 |
|                  | rted a               |                      |            |              |           |             |              |                                            | TOC Elevation: feet msl                       |               |                                                                 |
|                  | pletec               |                      |            |              | -95       |             |              |                                            | Depth to Groundwater: feet                    |               | Measurect                                                       |
|                  | ng Met               |                      |            |              |           |             |              |                                            | Groundwater Elevation: feet ms                | !             |                                                                 |
|                  | ng Con               |                      |            |              | or Only   | rg          |              |                                            | Total Depth: 125 feet                         |               | <del></del>                                                     |
| Geo              | ologist:             | Dawc                 | 1.20       | <del>0</del> |           | 1           | <del>,</del> | т                                          | Well Screen: 113.5 below grade to             | 1             | elow grade feet                                                 |
| DEPTH<br>IN FEET | LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE | SAMPLE NO. | * RECOVERY   | PTD (ppm) | GRAPHIC LOG | SOIL CLASS   | GEOLG                                      | OGIC DESCRIPTION                              | ELEV. (ft-ms) | WELL DIAGRAM                                                    |
|                  | $\Lambda \Lambda$    |                      | 20         |              | BG        | VO          |              |                                            |                                               |               |                                                                 |
|                  | 1 X I                |                      | 21         |              | BG        | 0 0         |              |                                            |                                               |               |                                                                 |
| 45-              |                      |                      | 22         | 80           | 86        | 0 5         |              | Sand, fine, gravish                        | orange to dark yellowish                      |               |                                                                 |
| ] :              | Λ Λ                  |                      | 23         |              | B6        | 0           |              | orange, wet, scatte                        | - · ·                                         |               |                                                                 |
|                  | $  \setminus    $    |                      | 24         |              | 86        | 10 0        |              |                                            |                                               |               | 40 PvC and 8" steel casing ———————————————————————————————————— |
| 50-              | XI                   |                      | 25         |              | 86        | 0           |              |                                            |                                               |               |                                                                 |
|                  | $ / \setminus  $     |                      |            |              |           | 0 9         |              |                                            |                                               |               |                                                                 |
|                  | / \                  |                      | 26         |              | 86        | 0 4         |              |                                            |                                               |               | 00                                                              |
| 55-              |                      |                      | 27         | 95           | BG        | 0           |              |                                            |                                               |               | 40 PVC and 8" steel casing                                      |
|                  | $\backslash /  $     |                      | 28         |              | 86        |             | GP           |                                            |                                               |               | 8" ste                                                          |
| 60-              | ΧI                   |                      | 29         |              | BG        | 100         |              |                                            |                                               | į             | /C and                                                          |
| •                | M                    |                      | 30         |              | BG        | D d         |              |                                            |                                               |               | 40 PV(                                                          |
|                  | $/ \ $               |                      | 31         |              | BG        | 000         |              |                                            | ne to very coarse grained,                    |               |                                                                 |
| 85-              |                      |                      | 32         | 90           | BG        | 0           |              | grayish orange to d                        | lark yellowish orange, gravel.                |               | 2". 10,                                                         |
|                  | $\setminus / \mid$   |                      | 33         |              | BG        | 0           |              |                                            |                                               |               |                                                                 |
| 70-              | 1                    |                      | 34         |              | BG        | v 9         |              |                                            |                                               |               |                                                                 |
|                  | M                    |                      | 35         |              | B6        | N 9         |              |                                            |                                               |               |                                                                 |
| },               | / \                  |                      | 36         |              | BG        | 0 3         |              |                                            |                                               |               |                                                                 |
| 75               |                      |                      | 37         | 90           | BG<br>·   | 0 4         |              |                                            | •                                             |               | miniminiminiminiminiminiminiminiminimin                         |
| }                | $\bigvee$            |                      | 38         |              | BG        |             |              | Sand, silty, very fine orange mottled with | e grained, dark yellowish<br>light gray, wet. |               |                                                                 |
| 80               |                      |                      | 39         |              | 86        |             | sc           | <b>3</b>                                   | or a service                                  |               |                                                                 |

|                  | Envir                |                      | 4          |              | S Sa       |             | ©<br>De    | signs, Inc.                                 | Log of Monitori                                               |                                              |                                                             |
|------------------|----------------------|----------------------|------------|--------------|------------|-------------|------------|---------------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
|                  | ject: /              |                      |            | i\$          |            |             |            |                                             | Location: Mington, TN SHMUN                                   | 7 - Buk                                      | ding N-126                                                  |
|                  | ject N               |                      |            |              |            |             |            |                                             | Surface Elevation: feet msl                                   |                                              |                                                             |
|                  | rted a               |                      |            |              |            |             |            |                                             | TOC Elevation: feet msl                                       |                                              |                                                             |
| <u> </u>         | npletec              |                      |            |              | -95        |             |            |                                             | Depth to Groundwater: feet                                    |                                              | Measured                                                    |
|                  | ing Met              |                      | ~          | _            |            |             |            |                                             | Groundwater Elevation: feet insl                              | <u>.                                    </u> |                                                             |
|                  | ng Con               |                      |            |              | r Dniir    | <b>8</b>    |            |                                             | Total Depth: 125 feet                                         |                                              |                                                             |
| Geo              | ologist:             | Daw                  | Lao        | <del>7</del> | Т          |             |            | r                                           | Well Screen: 113.5 below grade to                             | τ                                            | BOW grade feet                                              |
| DEPTH<br>IN FEET | LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE | SAMPLE NO. | X RECOVERY   | PTD (copm) | GPAPHIC LOG | SOIL CLASS | GEOL C                                      | OGIC DESCRIPTION                                              | ELEV. (fl-ms)                                | WELL DIAGRAM                                                |
|                  |                      |                      | 40         |              | BG         |             |            |                                             |                                                               |                                              |                                                             |
|                  | $ \lambda $          |                      | 41         |              | BG         |             |            | Sand, silty, very fir<br>orange to very pal | ne grained, dark yellowish                                    |                                              |                                                             |
| 85-              |                      |                      | 42         | 85           | BG         |             |            | orange to very par                          | e orange.                                                     |                                              |                                                             |
|                  | $\backslash / $      |                      | 43         |              | BG         |             |            |                                             | ne grained, dark yellowish<br>n light gray, interbedded with  |                                              |                                                             |
| 90~              | V                    |                      | 44         |              | BG         |             |            | gray clay, wet from                         |                                                               |                                              |                                                             |
|                  |                      |                      | 45         |              | BG         |             |            |                                             |                                                               |                                              | gasing                                                      |
|                  | $/ \  V$             |                      | 46         |              | BG         |             |            |                                             |                                                               |                                              | steel c                                                     |
| 95-              |                      |                      | 47         | 100          | BG         |             |            | brown to moderate                           | ded clay, very fine, dusky<br>brown, mottled with light olive |                                              | VC and 8" steel casing ———————————————————————————————————— |
| ]                | $\backslash / \mid$  |                      | 48<br>49   | !            | BG<br>BG   |             |            | gray, rare marcasit                         | e nodules.                                                    |                                              | 40 PVC and 8" steel casing                                  |
| 100-             | X                    |                      | 50         |              | BG         |             | sc         |                                             |                                                               | :                                            |                                                             |
| 1                | $/ \setminus $       |                      | 51         |              | BG         |             |            |                                             |                                                               |                                              | - 2" 10, Sch.                                               |
| 105              |                      |                      | 52         | 110          | 86         |             |            |                                             |                                                               |                                              | Remark IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                 |
| 1                | $\setminus A$        |                      | 53         |              | BG         |             |            |                                             |                                                               |                                              | MITTINIAN PARTIES SE SE SE SE SE SE SE SE SE SE SE SE S     |
| 110-             | $\bigvee$            |                      | 54         |              | BG         |             |            |                                             |                                                               |                                              |                                                             |
|                  | $\Lambda$            |                      | 55         |              | 8G         |             |            |                                             |                                                               |                                              |                                                             |
|                  | / \                  |                      | 56         |              | BG         |             |            |                                             |                                                               |                                              | Pu I                                                        |
| 115              |                      |                      | 57         | 110          | BG         |             |            |                                             |                                                               |                                              | VC screen                                                   |
|                  | X                    |                      | 58         |              | BG         |             |            |                                             |                                                               |                                              | 0.01 slot, PVC screen                                       |
| 120              | _\                   |                      | 59         |              | BG         |             | $\dashv$   |                                             |                                                               |                                              |                                                             |

|                |                   |                | Ē     | 71               | <u> </u>   |             | _@        | )                                          | Masikaring Wall                            | 07-          | MM-05                 |
|----------------|-------------------|----------------|-------|------------------|------------|-------------|-----------|--------------------------------------------|--------------------------------------------|--------------|-----------------------|
|                | Envi              | ronn           | nent  | al &             | Sa         | fety        | De:       | signs, Inc.                                | Monitoring Well                            | 07-          | -MM-82                |
| _              | ect /             |                |       |                  |            |             |           |                                            | Location Hangton, TN SWALK                 | 7 - Buk      | ing H-128             |
| Pro            | ect N             | a: NO          | 094   |                  |            |             |           |                                            | Surface Elevation: feet asi                |              |                       |
| Sta            | rted a            | t <i>6</i> 550 | an 2  | -1-05            |            |             |           |                                            | TOC Elevations feet mal                    |              |                       |
| Con            | pletec            | sat c          | n 2-2 | <del>25-86</del> |            |             |           |                                            | Depth to Groundwater: feet                 |              | Heesurect             |
| Dri            | ng Me             | thoat          | Rotas | ione             |            |             |           |                                            | Groundwater Elevation: feet asi            |              |                       |
|                | ng Car            |                |       |                  | Oran       | 9           |           |                                            | Total Deptit: 20.5 feet                    |              |                       |
| Geo            | dogst             | <i>B</i> en    | Brant | ey               |            |             |           |                                            | Hel Screen: 10 to 20 feet                  |              |                       |
| OBTH.<br>NFEET | UTHOLOGIC         | WATTER         | WEND  | X PECONERY       | (acct) Off | BRATHEC LOS | SOR OASS  | GEO.C                                      | OGIC DESCRIPTION                           | ELEV. (M-ma) | HELL DIAGRAM          |
| -              | 130               | 20             | S     | <b>  *</b>       | F          | 1           | 1 0       |                                            |                                            |              |                       |
| 5-             | X                 |                | 1     | 100              | 86         |             |           | Clayey sāt, modera<br>streaks, moist, sof  | ate brown with yesow gray<br>t.            |              | coron manufacture see |
| 10-            |                   |                | 3     | 100              | 86         |             | <b>M.</b> |                                            | brown, stiff and plastic.                  |              |                       |
| 20-            | $\longrightarrow$ |                |       | Ì                |            | Ш           | -         |                                            |                                            | 1            | <u> </u>              |
| 25-            |                   | •              | 4     | 95               | 86         |             |           | Log information tal<br>Cockfield well at S | ken from the boring for the newU07 site 9. |              |                       |
| 30-<br>35-     |                   |                |       |                  |            |             |           |                                            |                                            |              |                       |
|                |                   |                |       |                  |            |             |           |                                            |                                            |              |                       |

| Environmental & Sa                                                                                                                    | FE ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring Well                                                                                                                       | 07-MW-9UF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental & Sa                                                                                                                    | fety Designs, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Project NAS Memphs                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location Allington TN SHALM?                                                                                                          | ' - Building N-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project No.: A0094                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Elevations feet mal                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Started at 1550 on 2-18-95                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC Elevations feet mal                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Completed at an 2-25-95                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to Groundwater: feet                                                                                                            | Heasured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drilling Method: Rolasonic                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Groundweter Elevation: feet mail                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drilling Company: North Star Drillin                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Depth: 42 feet                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Geologist: Ben Brandley                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hell Screen: 32 to 42 feet                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DEPTH<br>NYEET<br>LITHOLOGIC<br>SWALE<br>SWALE NO<br>SWALE NO<br>SWALE NO<br>SWALE NO<br>SWALE NO<br>SWALE NO<br>SWALE NO<br>SWALE NO | SOF CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GEOLOGIC DESCRIPTION                                                                                                                  | E MELL DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 1 100 86  20 70 86  20 4 96 86  33 5 80 86                                                                                          | Clayey sit, streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streaks, according to the streak | eddish brown, stiff and plastic.  Eight brown with clay inclusions.  Inderate brown to reddish brown.  Systion orange to Eight brown. | 0.01 stot, PVC screen   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Properties   Prope |

Monitoring Well 07-MW-9UF Environmental & Safety Designs, Inc. Location: Mington, TN SHAW7 - Building N-126 Project NAS Memoria Project No.: NOOS4 Surface Devator: feet and Started at 1550 on 2-11-95 TOC Elevation feet and Completed at on 2-25-95 Depth to Groundwater: feet Measurect Orling Method: Rotasanic Groundwater Elevation: feet mai Drang Company: North Star Drang Total Depth: 42 feet Geologist Ben Brandley Well Screen: 32 to 42 feet 1 BRAMBIC LOS ANLYTICAL SAPLE SWOLEND X RECOVER 20 CO WELL DIAGRAM GEOLOGIC DESCRIPTION BEV. 6P O Log information taken from the boring for the Cockfield well at SMMU#7 site 9. 45-6 95 86 50 55-60-85 70-75-

#### Monitoring Well 07-MW-9LF Environmental & Safety Designs, Inc. Location: Minoton, TN SHALM7 - Building N-28 Project No.: NOOS4 Surface Elevations feet and Started at 1550 on 2-11-95 TOC Elevation feet as Completed at an 2-25-96 Heasurect Depth to Groundwater: feet Orling Method: Rotasanic Grandwater Elevation teet as Orling Company: North Star Driling Total Depth: 77 feet Geologist Ben Brandley Well Screen: 67 to 77 feet 1 GRAPHIC LOG ANNLYTEAL SAMPLE LITHOLOBIC SAMPLE X RECOVER SOAL GLASS SWALEND S ton GEOLOGIC DESCRIPTION WELL DIAGRAM MFEET BE. Clayey sit, moderate brown with yellow gray streaks, moist, soft. 1 100 86 2 70 **B6** ID, Sch. 40 PVC and 6" steel casing 3 100 86 Sity clay, reddish brown, stiff and plastic. MŁ Clayey silt, light brown with clay inclusions. 20. Sity clay, moderate brown to reddish brown. 25 95 86 30 Sand, fine, yellow orange to light brown. 35 5 86 0 80 0 GP Sand, medium, yellowish gray, micaceous. 0

| Environmental 8                                                     | Safety                                            |           | ians. Inc.                           | Monitoring Well                | 07-        | MW-9LF                                 |
|---------------------------------------------------------------------|---------------------------------------------------|-----------|--------------------------------------|--------------------------------|------------|----------------------------------------|
| Project: NAS Memphs                                                 | outery                                            |           | ignor the                            | Location Mington TN SHALM      | 7 - 840    | 10 N-26                                |
| Project No.: A0094                                                  |                                                   |           |                                      | Surface Elevations   feet mil  |            |                                        |
| Started at 1550 on 2-1-95                                           |                                                   |           |                                      | TOC Elevation: feet asi        |            |                                        |
| Completed at on 2-25-95                                             |                                                   |           |                                      | Depth to Groundwater: feet     |            | Measured                               |
| Orling Method: Rolasonic                                            |                                                   |           | ·                                    | Groundweter Devation: feet mal |            |                                        |
| Orlling Company: North Sta                                          | Orling                                            |           |                                      | Total Deptit: 77 feet          |            |                                        |
| Geologist: Ben Brantley                                             | <del>, , , , , , , , , , , , , , , , , , , </del> |           |                                      | Hell Screen: 67 to 77 feet     |            |                                        |
| DEPTH<br>NFEET<br>LINGLOSIC<br>SWALE<br>SWALE<br>SWALE<br>SWALE NO. | PTD (spee)                                        | SOR CLASS | <b>€€0</b> L0                        | OGIC DESCRIPTION               | BEV. (N-md | HELL DIAGRAM                           |
| 45— 6 95 50- 60- 70- 75- 80-                                        | # # # # # # # # # # # # # # # # # # #             | SC SC     | yellowish orange. Sity sand, very fi | iken from the boring for the   |            | TITITITITITITITITITITITITITITITITITITI |

#### Monitoring Well 07-MW-9MC Environmental & Safety Designs, Inc. SHALM7 - Building N-28 Project: NAS Memoria Location Mington TN Surface Elevation: feet mai Project No.: NOOP4 Started at 550 on 2-1-95 TOC Elevations | feet and Completed at on 2-25-85 Meesured: Depth to Groundwater: feet Groundweter Develore feet mil Orling Method: Rolasonic Total Depth: 15 feet Orling Company: North Star Driling Geologist Ben Brandley Well Screen: 102 to 112 feet 1 BRATHEC LOS ANN YTEM SWPLE 888 SWALEND X RECOVER 3 HELL DIAGRAM GEOLOGIC DESCRIPTION MFEET BEY. 2 Clayey sit, moderate brown with yellow gray streaks, moist, soft. 86 86 2 100 3 86 86 70 86 86 10, Sch. 40 PVC and 8" steel cashq 100 86 Sity clay, reddish brown, stiff and plastic. M 96 96 Clayey silt, light brown with clay inclusions. 20-86 86 Sity clay, moderate brown to reddish brown. 25 12 95 88 B 86 86 30-86 15 86 16 Sand, fine, yellow orange to light brown. 35 80 86 GP **B6** Sand, medium, yellowish gray, micaceous. 86

# Environmental & Safety Designs, Inc.

### Monitoring Well 07-MW-9MC

|                 |                                           |         |         |            | JU1      | Cty             | <u> </u> | igita, the.                             |                                 |                 |                                                                      |
|-----------------|-------------------------------------------|---------|---------|------------|----------|-----------------|----------|-----------------------------------------|---------------------------------|-----------------|----------------------------------------------------------------------|
|                 | ect: /                                    |         |         |            |          |                 |          |                                         | Locations Hillington, TN SHALM  | 7 <b>- Bu</b> k | ing N-128                                                            |
|                 | ect No                                    |         |         |            |          |                 |          |                                         | Surface Elevation: feet insi    |                 |                                                                      |
|                 | rted a                                    |         |         |            |          |                 |          |                                         | TOC Devators feet and           |                 |                                                                      |
| Car             | pletec                                    | at a    | n 2-2   | 5-95       |          |                 |          |                                         | Depth to Groundwater. I leet    |                 | Heasured                                                             |
| 0.1             | ng Met                                    | hod /   | Polas   | onic       |          |                 |          |                                         | Groundwater Elevation: leet mal |                 |                                                                      |
|                 | ng Con                                    |         |         |            | Oring    | 7               |          |                                         | Total Depth: 16 feet            |                 |                                                                      |
| Geo             | togst                                     | Ben t   | 3 and   | y          |          | <del>,</del> -, |          |                                         | Well Screen: 102 to 112 feet    |                 |                                                                      |
| DEPTH<br>INFEET | LTHOLOGIC                                 | ANNETER | SMALEND | % NECONERY | 5 CT (1) | GRAPHOC LOG     | SOR GASS | G€OLC                                   | GIC DESCRIPTION                 | BEV. (N-ma)     | HELL DIAGRAM                                                         |
|                 | 1/                                        |         | 20      |            | 86       | Va              |          |                                         |                                 |                 |                                                                      |
| ] :             | X                                         |         | 21      |            | 86       | 0 4             |          |                                         |                                 |                 |                                                                      |
| 45-             | $\langle \ \rangle$                       |         | 22      | 95         | 86       | 0               |          |                                         |                                 |                 |                                                                      |
|                 |                                           |         |         |            |          | 0               |          |                                         |                                 |                 |                                                                      |
|                 | 1 /                                       |         | 23      |            | 86       | 00              |          |                                         |                                 |                 |                                                                      |
| 50-             | N /                                       |         | 24      |            | 96       | 0 4             |          |                                         |                                 |                 |                                                                      |
|                 | V                                         |         | 25      |            | 96       | 0               |          |                                         |                                 |                 |                                                                      |
|                 | W                                         |         | 26      |            | 96       |                 |          |                                         |                                 |                 |                                                                      |
| 55-             |                                           |         | 27      |            | 96       | V a             |          |                                         |                                 |                 | Cashq                                                                |
|                 | $ \Lambda $                               |         | 28      |            | 86       | 0 9             | GP       |                                         |                                 |                 | 100                                                                  |
|                 | /                                         |         | 29      |            | 96       | 0 9             |          |                                         | •                               |                 | - P                                                                  |
| 60-             | $   \cdot   $                             |         | 30      |            | 86       | 0 0             |          | Sand, Coarse to g<br>yellowish orange.  | ravelly, grayish orange to      |                 | Sch. 40 PVC and 8" steel casing ———————————————————————————————————— |
|                 | / N                                       |         | 31      |            | 86       | 0               |          |                                         |                                 |                 | 4                                                                    |
| 65-             |                                           | •       | 32      | 90         | 86       | V 9             |          | ·                                       |                                 |                 | 2 10, S                                                              |
|                 |                                           |         | 33      |            | B6       | 00              |          |                                         |                                 |                 |                                                                      |
|                 | \                                         |         |         |            | i        | 0 4             |          |                                         |                                 |                 |                                                                      |
| 70-             | $  \backslash /  $                        |         | 34      |            | 86       | 0               |          |                                         |                                 |                 |                                                                      |
|                 | V                                         |         | 35      |            | 86       | O               |          |                                         |                                 |                 |                                                                      |
|                 | $ \Lambda $                               |         | 36      |            | 86       |                 |          | Sity sand, very fit with yellowish gray | ne, yellowish orange banded     | 1               | miniminiminiminiminiminiminiminiminimin                              |
| 75-             | /                                         |         | 37      |            | 86       |                 |          | RIGI YEROMINI YE                        | •                               |                 |                                                                      |
|                 | $/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |         | 38      |            | 86       |                 | SC       |                                         | grayish brown, dusky brown      | 1               |                                                                      |
| 80-             |                                           |         | 30      |            | 86       |                 |          | layers of clay with                     | ilight gray sand.               |                 |                                                                      |

# Environmental & Safety Designs, Inc.

# Monitoring Well 07-MW-9MC

|       | -11VII                  | Ulli         | leni     | di e       | 1 29     | iety        | DE:        | signs, Inc.        |                                |              |                                                                          |
|-------|-------------------------|--------------|----------|------------|----------|-------------|------------|--------------------|--------------------------------|--------------|--------------------------------------------------------------------------|
| Pro   | ect:                    | NAS M        | anon     | 3          |          |             |            |                    | Location: Mington, TN SHALI    | 7 - Buk      | ing N+128                                                                |
|       |                         | a: NO        |          |            |          |             |            |                    | Surface Elevation: feet mai    |              |                                                                          |
|       |                         | t 6550       |          |            |          |             |            |                    | TOC Elevations feet and        |              |                                                                          |
|       |                         | d at c       |          |            |          |             |            |                    | Depth to Groundwater: feet     |              | Measurect                                                                |
|       |                         | thoct        |          |            |          |             |            |                    | Groundwater Elevation: feet ma |              |                                                                          |
|       |                         | <b>mpany</b> |          |            | r Oran   | 9           |            |                    | Total Deptir #5 feet           |              |                                                                          |
| Geo   | ogst                    | <i>B</i> en  | Brant    | Ey         |          |             |            |                    | Well Screen: ICE to ICE feet   |              |                                                                          |
| NFEET | LTHOLOGIC               | ANNUTE       | SWELEND  | X RECOVERY | FD (ton) | GRAPHIC LOG | SORL GLASS | GEOL(              | GIC DESCRIPTION                | ELEV. (M-ma) | HELL DIAGRAM                                                             |
|       | /                       | 1            | 40       |            | 86       | 66          |            |                    |                                | }            |                                                                          |
|       | X                       |              | 41       |            | 86       |             |            |                    |                                |              | ID, Sch. 40 PVC and 6" steet casing ———————————————————————————————————— |
| 85-   |                         |              | 42       | 95         | 86       |             |            |                    |                                |              | Buys                                                                     |
| •     |                         |              | 43       |            | 86       |             |            |                    |                                |              | steet ca                                                                 |
| 90-   | $\mathbb{N}$            |              | 44       |            | 86       |             |            |                    |                                |              |                                                                          |
|       | $\bigvee$               |              | 45<br>46 |            | 86       | ***         |            |                    |                                |              | ID, Sch. 40 PVC and 6" steel casing communications.                      |
| 95-   | Y                       |              | 47       |            | 96       |             |            |                    |                                |              | D, Sch.                                                                  |
|       | $\Lambda$               |              | 48       |            | 96       |             | SC         |                    | -                              |              |                                                                          |
| 1000- | $/\backslash$           |              | 49       |            | 86       |             |            |                    |                                |              | 8 8<br>8 8<br>8 8                                                        |
| 1     | $  \  $                 |              | 50<br>51 |            | B6<br>B6 |             |            |                    |                                |              | +                                                                        |
| 105-  |                         |              | 52       | 90         | 86       |             |            |                    |                                |              | 1 15 1 1                                                                 |
|       | $\setminus / $          |              | 53       |            | 86       |             |            |                    |                                |              | 0.01 stot, PVC screen                                                    |
| 110-  | X I                     |              | 54       |            | 86       | 1555        |            |                    |                                |              |                                                                          |
|       | $/\!\!\setminus\!\!\! $ |              | 55<br>56 |            | 86<br>86 | 55.<br>//// |            | Clay, dusky brown, | hard and waxy, with medium     | -            | 1                                                                        |
| 115   |                         |              | 57       | 110        | 86       |             | a          | gray sand lenses.  |                                |              |                                                                          |
| 1     |                         |              |          |            |          |             |            | End of boring at # | <b>5.</b>                      |              |                                                                          |
| 120-  |                         |              |          |            |          |             |            |                    | • .                            |              |                                                                          |



Client: EnSafe/Allen & Hoshall

Date of Report: 03/17/95 Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 007S000177

Soil Description: Yellow & light Gray Silt with fine sand

| . •                      | Pre-Test | <u>Post Test</u> |
|--------------------------|----------|------------------|
| Wet Density (Lbs/ft3)    | 118.6    | 120.8            |
| Dry Density (Lbs/ft3)    | 101.0    | 101.9            |
| Moisture (% Dry Wt)      | 17.4     | 18.6             |
| Porosity (n)             | .397     | .383             |
| Degree of Saturation (%) | .97      | 1.0              |

#### Permeability

Temperature Correction,  $R_t = 1.048$ 

 $K_1 = 6.7 \times 10^{-5} \text{ cm/sec}$   $K_2 = 6.4 \times 10^{-5} \text{ cm/sec}$   $K_3 = 6.8 \times 10^{-5} \text{ cm/sec}$  $K_4 = 6.2 \times 10^{-5} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 6.8 \times 10^{-5} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0019

Reviewed By:

David D. McCray



Client: EnSafe/Allen & Hoshall

Date of Report: 03/17/95 Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 07S0001112

Soil Description: Dark Brown Clay with Silt & fine

sand lenses running horizontal

|                          | <u> Pre-Test</u> | <u>Post Test</u> |
|--------------------------|------------------|------------------|
| Wet Density (Lbs/ft3)    | 105.6            | 108.0            |
| Dry Density (Lbs/ft3)    | 80.2             | 78.6             |
| Moisture (% Dry Wt)      | 31.7             | 37.4             |
| Porosity (n)             | .506             | .516             |
| Degree of Saturation (%) | .96              | 1.0              |

#### Permeability

Temperature Correction, R, = 1.043

 $K_1 = 3.7 \times 10^{-8} \text{ cm/sec}$   $K_2 = 4.2 \times 10^{-8} \text{ cm/sec}$   $K_3 = 3.9 \times 10^{-8} \text{ cm/sec}$  $K_4 = 3.9 \times 10^{-8} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 4.1 \times 10^{-8} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0018

eviewed By:



Client: EnSafe/Allen & Hoshall

Date of Report: 03/13/95 Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 007S0003117

Soil Description: Dark Brown Clay with Silt & fine

sand lenses running horizontal

|                          | <u> Pre-Test</u> | <u>Post Test</u> |
|--------------------------|------------------|------------------|
| Wet Density (Lbs/ft3)    | 98.0             | 103.2            |
| Dry Density (Lbs/ft3)    | 75.3             | 73.8             |
| Moisture (% Dry Wt)      | 30.1             | 39.9             |
| Porosity (n)             | . 544            | .554             |
| Degree of Saturation (%) | . 67             | .95              |

#### Permeability

Temperature Correction, R. = 1.086

 $K_1 = 1.4 \times 10^{-8} \text{ cm/sec}$   $K_2 = 1.4 \times 10^{-8} \text{ cm/sec}$   $K_3 = 1.7 \times 10^{-8} \text{ cm/sec}$  $K_4 = 1.3 \times 10^{-8} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 1.6 \times 10^{-8} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0014

Reviewed By:

bavia b. Meeraj



Client: EnSafe/Allen & Hoshall

Date of Report: 03/17/95

Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 07S0008127

Soil Description: Dark Brown Clay with Silt & fine sand lenses

|                          | <u> Pre-Test</u> | <u>Post Test</u> |
|--------------------------|------------------|------------------|
| Wet Density (Lbs/ft3)    | 104.9            | 109.7            |
| Dry Density (Lbs/ft3)    | 81.1             | 82.0             |
| Moisture (% Dry Wt)      | 29.3             | 33.7             |
| Porosity (n)             | .497             | .504             |
| Degree of Saturation (%) | .91              | 1.0              |

#### Permeability

Temperature Correction, R, = 1.053

 $K_1 = 8.7 \times 10^{-7} \text{ cm/sec}$   $K_2 = 7.6 \times 10^{-7} \text{ cm/sec}$   $K_3 = 8.4 \times 10^{-7} \text{ cm/sec}$  $K_4 = 8.5 \times 10^{-7} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 8.7 \times 10^{-7} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0017

Reviewed By:

David D. McCray



Client: EnSafe/Allen & Hoshall

Date of Report: 03/13/95

Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 007S000922

Soil Description: Brown Silty Clay

|                          | <u> Pre-Test</u> | <u>Post Test</u> |
|--------------------------|------------------|------------------|
| Wet Density (Lbs/ft3)    | 119.9            | 121.1            |
| Dry Density (Lbs/ft3)    | 94.0             | 95.4             |
| Moisture (% Dry Wt)      | 27.5             | 26.9             |
| Porosity (n)             | .430             | .420             |
| Degree of Saturation (%) | .963             | .980             |

#### Permeability

Temperature Correction, R. = 1.056

 $K_1 = 6.9 \times 10^{-7} \text{ cm/sec}$   $K_2 = 1.0 \times 10^{-6} \text{ cm/sec}$   $K_3 = 9.7 \times 10^{-7} \text{ cm/sec}$   $K_4 = 9.2 \times 10^{-7} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 9.5 \times 10^{-7} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0016



Client: EnSafe/Allen & Hoshall

Date of Report: 03/13/95

Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 008MW025

Soil Description: Dark Brown Silty Clay

|                          | <u> Pre-Test</u> | <u>Post Test</u> |
|--------------------------|------------------|------------------|
| Wet Density (Lbs/ft3)    | 126.0            | 128.4            |
| Dry Density (Lbs/ft3)    | 100.1            | 101.8            |
| Moisture (% Dry Wt)      | 25.9             | 26.1             |
| Porosity (n)             | .396             | .384             |
| Degree of Saturation (%) | 1.0              | 1.0              |

#### Permeability

Temperature Correction, R, = 1.086

 $K_1 = 5.9 \times 10^{-7} \text{ cm/sec}$   $K_2 = 1.6 \times 10^{-7} \text{ cm/sec}$   $K_3 = 1.6 \times 10^{-7} \text{ cm/sec}$  $K_4 = 2.0 \times 10^{-7} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 3.0 \times 10^{-8} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0015

Reviewed By:

-755 B - FAX 901-386-6614



Client: EnSafe/Allen & Hoshall

Date of Report: 02/27/95

Project No.: E-2-837

Project Name: NAS Memphis, Tennessee

Sample I.D.: 0600S0003022

Soil Description: Gray Silty Clay

| •                        | Pre-Test | <u>Post Test</u> |
|--------------------------|----------|------------------|
| Wet Density (Lbs/ft3)    | 127.1    | 124.6            |
| Dry Density (Lbs/ft3)    | 104.9    | 100.6            |
| Moisture (% Dry Wt)      | 21.2     | 23.8             |
| Porosity (n)             | .366     | .361             |
| Degree of Saturation (%) | .97      | .99              |

#### Permeability

Temperature Correction, R, = 1.043

 $K_1 = 2.2 \times 10^{-7} \text{ cm/sec}$   $K_2 = 1.0 \times 10^{-7} \text{ cm/sec}$   $K_3 = 1.7 \times 10^{-7} \text{ cm/sec}$   $K_4 = 1.6 \times 10^{-7} \text{ cm/sec}$ 

Coefficient of Permeability,  $K_{20} = 1.7 \times 10^{-7} \text{ cm/sec}$ 

Tested in accordance with Method 9100 of Test Methods for evaluation Solid Waste, Third Addition (SW-846) and in general accordance with ASTM D-5084-90.

Lab No. P-95-0011



#### Report of Laboratory Analysis

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 Project No.: E-2-837 Date: 13 March '95

Sheet 1 of 1

| Project: NAVY CLEAN Memphis, Tennessee                   |             |          |            |
|----------------------------------------------------------|-------------|----------|------------|
| Sample<br>Identification                                 | 007S0003117 | 008MW025 | 007S000922 |
| Percent<br>Moisture<br>(as received)                     | 30.1%       | 25.9%    | 27.5%      |
| Bulk Density Wet<br>(as received)<br>LBS/ft <sup>3</sup> | 98.0        | 126.0    | 119.9      |
| Bulk Density Dry<br>(as received)<br>LBS/ft <sup>3</sup> | 75.3        | 100.1    | 94.0       |
| Specific<br>Gravity                                      | 2.65        | 2.64     | 2.64       |

Reviewed by:

David D. McCray



#### Report of Laboratory Analysis

EnSafe/Allen & Hoshall 5720 Summer Trees Drive, Suite 8 Memphis, Tennessee 38134 Project No.: E-2-837 Date: 17 March '95 Sheet 1 of 1

| Project: NAVY CLEAN Memphis, Tennessee                   |            |            |            |
|----------------------------------------------------------|------------|------------|------------|
| Sample<br>Identification                                 | 07S0008127 | 07S0001112 | 007S000177 |
| Percent<br>Moisture<br>(as received)                     | 29.3%      | 31.7%      | 17.4%      |
| Bulk Density Wet<br>(as received)<br>LBS/ft <sup>3</sup> | 104.9      | 105.6      | 118.6      |
| Bulk Density Dry<br>(as received)<br>LBS/ft <sup>3</sup> | 81.1       | 80.2       | 101.0      |
| Specific<br>Gravity                                      | 2.65       | 2.65       | 2.63       |

Reviewed by:

David D. McCray



















| En.                                      | Sai                  | fe,        | /AI             | ller       | ) &         | Н          | oshall                                                                                                                                    | Monitoring                                                            | Well          | 60MW01LS                     |  |
|------------------------------------------|----------------------|------------|-----------------|------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|------------------------------|--|
| Project:                                 | NAS M                | emph       | is              |            | _           | _          |                                                                                                                                           | Location: Milington, TN. SWMU 60 - North Landfill                     |               |                              |  |
| Project N                                | o: NO                | 094        |                 |            |             |            |                                                                                                                                           | Surface Elevation: 269.25 feet                                        |               |                              |  |
| Started a                                | t <i>on 1</i>        | -31-9      | <del>35</del>   |            |             |            |                                                                                                                                           | TOC Elevation: 271.87 feet ms/                                        |               | ·                            |  |
| Complete                                 | dat o                | n 1–3      | 1-95            | _          |             |            |                                                                                                                                           | Depth to Groundwater: 3.30 fe                                         | <u></u>       | Measured: 3/31/95            |  |
| Drilling Me                              | thoa: /              | Rotas      | sonic           | _          |             |            |                                                                                                                                           | Groundwater Elevation: 268.57                                         | feet ms/      | <del></del>                  |  |
| Drilling Co                              |                      |            |                 | er Drillir | ng          |            |                                                                                                                                           | Total Depth: 20.0 feet                                                |               |                              |  |
| Geologist:                               | Ryan                 | Liste      | er              | _          | <b></b> -   |            |                                                                                                                                           | Well Screen: 10 to 20 feet                                            |               |                              |  |
| DEPTH<br>IN FEET<br>LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE | SAMPLE NO. | * RECOVERY      | PID (ppm)  | GRAPHIC LOG | SOIL CLASS | GEOLO                                                                                                                                     | OGIC DESCRIPTION                                                      | ELEV. (ft-ms) | WELL DIAGRAM                 |  |
| 10                                       | A S                  | 3          | 80<br>60<br>100 | 313        |             | ML         | Silt, dark yellowish brown, has light oliv streaking.  Silt, olive gray to m moderate yellowish 15'-20'. Black stair staining present fro | brown silt inclusions from silt inclusions from paired well MW-01-LF. | 249.2         | Continuity   PVC screen   PK |  |
| 35-                                      |                      |            |                 |            |             |            |                                                                                                                                           |                                                                       |               |                              |  |
| 40-                                      |                      |            |                 |            |             |            |                                                                                                                                           |                                                                       |               |                              |  |

| EnSafe/Allei                                                                     | n & Hoshall                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring Well<br>Boring 605                                                                                                                           | 60MW01LF<br>30001  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Project: NAS Memphis                                                             |                                                                                                                                                                                                                                                                                                                                                                                                | Location: Milington TN. SWMU#60                                                                                                                         | North Landfill     |
| Project No.: NO094                                                               |                                                                                                                                                                                                                                                                                                                                                                                                | Surface Elevation: 269.19 feet msl                                                                                                                      |                    |
| Started at 0700 on 1-31-95                                                       |                                                                                                                                                                                                                                                                                                                                                                                                | TOC Elevation: 271.44 feet ms/                                                                                                                          |                    |
| Completed at 0845 on 2-02-95                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                              | Depth to Groundwater: 20.49 feet                                                                                                                        | Measured: 03/31/95 |
| Drilling Method: Rotasonic                                                       |                                                                                                                                                                                                                                                                                                                                                                                                | Groundwater Elevation: 250.95 feet                                                                                                                      | msi                |
| Drilling Company: North Star Drilli                                              | ling                                                                                                                                                                                                                                                                                                                                                                                           | Total Depth: 75.0 feet                                                                                                                                  |                    |
| Geologist: David Ladd                                                            |                                                                                                                                                                                                                                                                                                                                                                                                | Well Screen: 65 to 75 feet                                                                                                                              |                    |
| DEPTH IN FEET LITHOLOGIC SAMPLE ANALYTICAL SAMPLE SAMPLE SAMPLE SAMPLE PID (DOM) | GRAPHIC LOG<br>SOIL CLASS                                                                                                                                                                                                                                                                                                                                                                      | OGIC DESCRIPTION                                                                                                                                        | WELL DIAGRAM       |
| 1 80 46<br>10 2 60 313<br>3 100 3.4<br>20 30 30 30 30 30 30 30 30 30 30 30 30 30 | Silt, pale olive with and 5'-7'.  Silt, dark yellowish brown, has light olistreaking.  Silt, olive gray to moderate yellowish 15'-20'. Black staistaining present from the staining present (2) staining present (2).  Silt, light olive gray staining present (2).  Silt, moderate yellowish 15'-20'. Some but mostly moderate yellowish 15'-20'. Some but mostly moderate yellowish 15'-20'. | orange to moderate yellowish ve gray silt inclusions and iron  medium dark gray with brown silt inclusions from ning present at 15'-17'. No om 20'-25'. |                    |

| EnSafe/All                                                          | en & Hoshall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring Well (<br>Boring 60S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOMWOILF<br>DOO1                                                     |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Project: NAS Memphis                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: Milington TN. SWMU#60 No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rth Landfill                                                         |
| Project No.: NO094                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Elevation: 269.19 feet msl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |
| Started at 0700 on 1-31-95                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC Elevation: 271.44 feet msl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |
| Completed at <i>0845</i> on 2-02                                    | P-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth to Groundwater: 20.49 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measured: 03/31/95                                                   |
| Drilling Method: Rotasonic                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Groundwater Elevation: 250.95 feet ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
| Drilling Company: North Star                                        | Driting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Depth: 75.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |
| Geologist: David Ladd                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well Screen: 65 to 75 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |
| DEPTH IN FEET LITHOLOSIC SAMPLE ANALYTICAL SAMPLE SAMPLE SAMPLE NO. | GRAPH<br>GRAPH<br>SOIL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WELL DIAGRAM                                                         |
| 45-<br>50-<br>60-<br>70-<br>75-<br>80-                              | Sand, fine to coars dark yellowish oran gravel.  Sand and gravel, pyellowish gray to dis chert and quartz  Gravel and sand, of moderate brown, check the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of the coars of | oorly sorted and silty, lark yellowish orange. Gravel with chert gavels up to 2.5".  see grained, yellowish gray to age, contains some scattered  oorly sorted and silty, ark yellowish orange. Gravel chert and quartz gravel up to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish orange to ark yellowish yellowish orange to ark yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish yellowish y | +— 0.01 slot, PVC screen -> - 2" ID, Sch. 40 PVC and 8" steel casing |

| EnSafe/A                                                        | Allen & I                        | Hoshall                                                                                                                                                                                                                                                                     | Monitoring W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ell 6                | OMWO2LS                                |  |
|-----------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|--|
| Project: NAS Memohis                                            | <del></del>                      |                                                                                                                                                                                                                                                                             | Location: Milington, TN. SWMU#60 - North Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                        |  |
| Project No.: NOO94                                              |                                  |                                                                                                                                                                                                                                                                             | Surface Elevation: 268.85 feet /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                        |  |
| Started at 0830 on 2-0                                          | 1–95                             |                                                                                                                                                                                                                                                                             | TOC Elevation: 270.84 feet ms/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                        |  |
| Completed at 1015 on 2-6                                        | OI95                             |                                                                                                                                                                                                                                                                             | Depth to Groundwater: 3.860 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | et                   | Measured: 3/31/95                      |  |
| Drilling Method: Rotasoni                                       |                                  |                                                                                                                                                                                                                                                                             | Groundwater Elevation: 266.98 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |  |
| Drilling Company: North S                                       | Star Drilling                    |                                                                                                                                                                                                                                                                             | Total Depth: 20.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                        |  |
| Geologist: Ryan Lister                                          |                                  |                                                                                                                                                                                                                                                                             | Well Screen: 10 to 20 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                        |  |
| DEPTH IN FEET LITHOLOGIC SAMPLE ANALYTICAL SAMPLE SAMPLE SAMPLE | * RECOVERY PID (ppm) GRAPHIC LOG | SOIL CLASS                                                                                                                                                                                                                                                                  | GIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEV. (fl-ms)        | WELL DIAGRAM                           |  |
| 5                                                               | O BG                             | Silt, moserate yellor Roots occuring at .! at 1' stained black.  ML Silt, moderate yellor gray to light olive g Staining also at 9.5'  Silt, olive gray with of an inch.  End of boring. Total Analytical and geological siles are yellor gray with a staining also at 9.5' | wish brown with organics. 5' and 4'. 1" gravel section  wish brown, with a greenish ray silt swirled throughout.  iron nodules to one quarter  all depth of boring at 20'.  regic description taken from the acceptance of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec | - <del>-</del> 248.9 | —————————————————————————————————————— |  |

| EnSafe/                                                         | Allen                   | & Ho                      | oshall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring W<br>Boring 6       | ell 6<br>050   | OMW02LF<br>002    |
|-----------------------------------------------------------------|-------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|-------------------|
| Project: NAS Memphis                                            | ·                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: Millington TN. SWMU  | #60 - N        | orth Landfill     |
| Project No.: NO094                                              | <del></del> -           | •,                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Elevation: 268.43 feet |                |                   |
| Started at 1120 on 2-01                                         | -95                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC Elevation: 270.90 feet ms/ | -              |                   |
| Completed at on 2-02-                                           | -95                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to Groundwater: 20.00 fe | et             | Measured: 3/31/95 |
| Drilling Method: Rotason                                        | nic                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Groundwater Elevation: 250.90  | _              |                   |
| Drilling Company: North                                         | Star Drilling           |                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Depth: 95.0 feet         |                |                   |
| Geologist: Jack C.                                              |                         | *                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Screen: 83 to 93 feet     |                |                   |
| DEPTH IN FEET LITHOLOGIC SAWPLE ANALYTICAL SAMPLE SAMPLE SAMPLE | X RECOVERY<br>PID (ppm) | GRAPHIC LOG<br>SOIL CLASS | GEOLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OGIC DESCRIPTION               | ELEV. (ft-msl) | WELL DIAGRAM      |
| 5 1<br>10 2<br>15 3 1                                           | 70 BG  90 BG            | ML GP/                    | Silt, moderate yello gray to light olive gray with of an inch.  Silt, olive gray with of an inch.  Silt, olive gray to me present 25'-30'.  Silt, dark yellowish of to light gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith gray silt swith g | edium light gray, iron nodules | -228.4         |                   |

| EnSafe,                                                  | /All       | len       | &                                      | Нс         | shall                                                                                                                                                                                                                                        | Monitoring W<br>Boring 6                                                                                                                                                                                                                                                                                         | ell 6<br>050   | OMW02LF<br>002                         |
|----------------------------------------------------------|------------|-----------|----------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|
| Project: NAS Memph                                       | is         |           |                                        |            |                                                                                                                                                                                                                                              | Location: Millington TN. SWMU:                                                                                                                                                                                                                                                                                   | #60 - N        | orth Landfill                          |
| Project No.: NO094                                       |            |           |                                        |            |                                                                                                                                                                                                                                              | Surface Elevation: 268.43 feet                                                                                                                                                                                                                                                                                   |                |                                        |
| Started at 1120 on 2-                                    | -01-95     |           |                                        |            |                                                                                                                                                                                                                                              | TOC Elevation: 270.90 feet ms/                                                                                                                                                                                                                                                                                   |                |                                        |
| Completed at on 2-                                       | 72-95      |           |                                        |            |                                                                                                                                                                                                                                              | Depth to Groundwater: 20.00 fe                                                                                                                                                                                                                                                                                   | et -           | Measured: 3/31/95                      |
| Drilling Method: Rota                                    | sonic      |           |                                        |            |                                                                                                                                                                                                                                              | Groundwater Elevation: 250.90                                                                                                                                                                                                                                                                                    |                |                                        |
| Drilling Company: Noi                                    |            | Drittine  | 7                                      |            |                                                                                                                                                                                                                                              | Total Depth: 95.0 feet                                                                                                                                                                                                                                                                                           |                |                                        |
| Geologist: Jack C.                                       |            |           |                                        |            |                                                                                                                                                                                                                                              | Well Screen: 83 to 93 feet                                                                                                                                                                                                                                                                                       |                |                                        |
| DEPTH IN FEET LITHOLOGIC SAMPLE ANALYTICAL SAMPLE SAMPLE | % RECOVERY | PID (ppm) | GRAPHIC LOG                            | SOIL CLASS |                                                                                                                                                                                                                                              | OGIC DESCRIPTION                                                                                                                                                                                                                                                                                                 | ELEV. (ft-msl) | WELL DIAGRAM                           |
| 45 5 6 6 7 7 75 8                                        | 93         | BG BG     | 00000000000000000000000000000000000000 | GP GP      | brown. Chert and diameter.  Sand and gravel, y brown, stained yells is fine to very coal Sand with some gravery coarse graine  Sand and gravel, y brown, locally stain is chert and quartz grained.  Sand with some grafine to coarse grain. | relatively clean, yellowish quartz gravels up to 2.5" in ellowish gray to yellowish owish orange near 49'. Sand rise grained, silty.  avel, yellowish gray, fine to d, relatively clean.  ellowish gray to yellowish ed yellowish orange. Gravel, sand is fine to very coarse  avel, dark yellowish orange, med. | 228.4          | ************************************** |

|                  | Ens                  | Sa                   | fe,        | /AI         | ler       | & | Н          | oshall                                  | Monitoring<br>Boring                             | well 6<br>60500 | 0MW02LF<br>002        |  |
|------------------|----------------------|----------------------|------------|-------------|-----------|---|------------|-----------------------------------------|--------------------------------------------------|-----------------|-----------------------|--|
| Pro              | ject: /              | NAS M                | lemph      | is          |           |   |            |                                         | Location: Milington TN. SWMU#60 - North Landfill |                 |                       |  |
|                  | ject N               |                      |            |             |           |   |            |                                         | Surface Elevation: 268.43 fee                    | et msl          |                       |  |
|                  | arted a              |                      |            |             |           |   |            |                                         | TOC Elevation: 270.90 feet m                     | s/              |                       |  |
| 1                | nplete               |                      |            |             |           |   |            |                                         | Depth to Groundwater: 20.00                      |                 | Measured: 3/31/95     |  |
|                  | ing Me               |                      |            |             |           |   |            |                                         | Groundwater Elevation: 250.9                     | O feet msl      |                       |  |
|                  | ing Co               |                      |            | th Sta      | r Drillir | g |            |                                         | Total Depth: 95.0 feet                           |                 |                       |  |
| Geo              | ologist:             | Jack                 | · <u>Γ</u> | <del></del> | 1         | 1 | Т.         | ·                                       | Well Screen: 83 to 93 feet                       |                 |                       |  |
| DEPTH<br>IN FEET | LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE | SAMPLE NO. | * RECOVERY  | PID (ppm) |   | SOIL CLASS | GEOLG                                   | GIC DESCRIPTION                                  | ELEV. (ft-msl)  | METT DIABLE Seal      |  |
| 85-<br>90-       |                      |                      | 9          | 90          | BG        |   | GP         | Sand coarse with g<br>yellowish orange. | ravel, grayish brown to dark                     | 175.4           | 0.01 slot, PVC screen |  |
| 95-              |                      |                      | 10         | 100         | BG        |   | ML         | micaceous, dry.                         | brown, laminated, stiff, finely                  | 73.4            |                       |  |
|                  |                      |                      |            |             |           |   |            | bottom of well will b                   |                                                  |                 |                       |  |
| 100-             |                      |                      |            |             |           |   |            |                                         |                                                  |                 |                       |  |
| 105-             |                      |                      |            |             |           |   |            |                                         |                                                  |                 |                       |  |
| 110-             |                      |                      |            |             |           |   |            |                                         |                                                  |                 |                       |  |
| 115-             |                      |                      |            |             |           |   |            |                                         |                                                  |                 |                       |  |
| 120-             |                      |                      |            |             |           |   |            |                                         |                                                  |                 | ·                     |  |

| Eı                             | nSa                            | fe,        | /AI        | len       | &           | Н          | oshall                 | Monitoring                                        | Well 6        | OMWO3LS                               |
|--------------------------------|--------------------------------|------------|------------|-----------|-------------|------------|------------------------|---------------------------------------------------|---------------|---------------------------------------|
| Project                        | : NAS A                        | lетрh      | is         |           | -           |            |                        | Location: Milington, TN. SWMUH60 - North Landfill |               |                                       |
|                                | No.: NO                        |            |            |           |             |            |                        | Surface Elevation: 269.60 f                       |               |                                       |
|                                | at on.                         |            |            |           |             |            |                        | TOC Elevation: 271.40 feet i                      | ns/           |                                       |
|                                | ted at a                       |            |            |           |             |            | <del>-</del>           | Depth to Groundwater: 7.03                        |               | Measured: 3/31/95                     |
|                                | dethod:                        |            |            |           |             |            |                        | Groundwater Elevation: 264.                       | 37 feet ms/   | · <del></del>                         |
|                                | Company<br>st: <i>Rya</i> /    |            |            | r Urwn    | <u>g</u>    |            |                        | Total Depth: 20.0 feet                            |               | ·                                     |
| 0000                           | Ji. Hya                        | T          | <u></u>    | T         | T           | T .        |                        | Well Screen: 10 to 20 feet                        |               | <del></del>                           |
| DEPTH<br>IN FEET<br>LITHOLOGIC | SAMPLE<br>ANALYTICAL<br>SAMPLE | SAMPLE NO. | % RECOVERY | PIO (ppm) | GRAPHIC LOG | SOIL CLASS | GEOLC                  | OGIC DESCRIPTION                                  | ELEV. (ft-ms) | WELL DIAGRAM                          |
| 10<br>15<br>20<br>35<br>40     |                                | 3          | 100        | BG<br>BG  |             | ML         | Silt, greenish gray to | ng terminated at 40'.                             | 249.6         | ————————————————————————————————————— |

| Er                             | nSa                            | fe/        | /AI        | len        | &           | Нс         | shall                                                                         | Monitoring W<br>Boring 60                                                              | ell 6<br>050   | OMWO3LF<br>OO3                        |
|--------------------------------|--------------------------------|------------|------------|------------|-------------|------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|---------------------------------------|
| Project                        | : NAS M                        | lemphi.    | 5          |            |             |            |                                                                               | Location: Millington TN. SWMU#                                                         | #60 - N        | orth Landfill                         |
| Project                        | No.: NO                        | 0094       |            |            |             |            |                                                                               | Surface Elevation: 268.90 feet i                                                       |                |                                       |
|                                | at 1330                        |            |            |            |             |            |                                                                               | TOC Elevation: 271.52 feet msl                                                         |                |                                       |
|                                | ted at 16                      |            |            | -95        |             |            |                                                                               | Depth to Groundwater: 20.02 fe                                                         | et             | Measured: 3/31/95                     |
|                                | Method                         |            | _          |            |             |            |                                                                               | Groundwater Elevation: 251.50 fe                                                       | eet ms/        |                                       |
|                                | Company                        |            |            | r Drilling | 7           |            |                                                                               | Total Depth: 95.0 feet                                                                 |                |                                       |
| Geologis                       | st: <i>Jack</i>                | Carm       | icnaei     | T          | ·           |            |                                                                               | Well Screen: 77 to 87 feet                                                             | Τ_             | · · · · · · · · · · · · · · · · · · · |
| DEPTH<br>IN FEET<br>LITHOLOGIC | SAMPLE<br>ANALYTICAL<br>SAMPLE | SAMPLE NO. | % RECOVERY | PID (ppm)  | GRAPHIC LOG | SOIL CLASS | GEOLG                                                                         | OGIC DESCRIPTION                                                                       | ELEV. (ft-msl) | WELL DIAGRAM                          |
| 10                             | 7S                             | 1 2 5      | 100        | BG BG BG   | 9           | ML         | Silt, moderate yello<br>very dry.  Silt, greenish gray  Silt, clayey, greenis |                                                                                        |                |                                       |
| 35-                            |                                | 7          |            | BG<br>BG   |             |            | gray silt swirling.                                                           | sh gray, iron staining and light<br>orange with a light olive gray<br>irled througout. |                |                                       |
| 40                             |                                | 8          | 93         | BG         |             | (GM/       | Silt, light olive gray                                                        |                                                                                        | -228.9         |                                       |

|                  | Ens                  | Sat                  | e/         | /AI        | len          | &                                       | Нс         | shall                                                                                                                           | Monitoring (<br>Boring 6                                                                                                                                                                                                        | Well 6         | 0MW03LF<br>003             |  |
|------------------|----------------------|----------------------|------------|------------|--------------|-----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|--|
| Pro              | ject: Ā              | IAS ME               | emphi:     | 5          |              |                                         | _          | <u> </u>                                                                                                                        | Location: Millington TN. SWMU#60 - North Landfill                                                                                                                                                                               |                |                            |  |
| Pro              | ject No              | ): NO                | 094        |            |              |                                         |            |                                                                                                                                 | Surface Elevation: 268.90 fee                                                                                                                                                                                                   |                |                            |  |
| Sta              | rted at              | 1330                 | on 2-      | -01-95     | 5            |                                         |            |                                                                                                                                 | TOC Elevation: 271.52 feet ms                                                                                                                                                                                                   | 1              |                            |  |
| Cor              | npleted              | at 163               | 30 on      | 2-07       | - <i>9</i> 5 |                                         |            |                                                                                                                                 | Depth to Groundwater: 20.02                                                                                                                                                                                                     |                | Measured: 3/31/95          |  |
| Drift            | ing Met              | hoct f               | Rotas      | onic       |              |                                         |            |                                                                                                                                 | Groundwater Elevation: 25150                                                                                                                                                                                                    | feet msi       |                            |  |
| Drif             | ing Corr             | pany:                | Nort       | th Sta     | r Drillin    | g                                       |            |                                                                                                                                 | Total Depth: 95.0 feet                                                                                                                                                                                                          |                |                            |  |
| Geo              | ologist:             | Jack                 | Carmi      | chael      |              |                                         |            |                                                                                                                                 | Well Screen: 77 to 87 feet                                                                                                                                                                                                      |                |                            |  |
| DEPTH<br>IN FEET | LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE | SAMPLE NO. | * RECOVERY | PIO (ppm)    | GRAPHIC LOG                             | SOIL CLASS | GEOLG                                                                                                                           | OGIC DESCRIPTION                                                                                                                                                                                                                | SELEV. (ft-ms) | WELL DIAGRAM               |  |
| 45-              |                      |                      | 9          | 70         | BG           | 00-00-00-00-00-00-00-00-00-00-00-00-00- |            | some intervals of r<br>half of an inch, dan<br>orange, wet.<br>Silt, clayey, pale y<br>49'-55' there are<br>gravel which are pi | ith gravel, silty, trace clay,<br>eal clean gravel up to one<br>rk yellwoish orange to grayish<br>ellowish brown, moist, from<br>alternating layers of sandy<br>nkish gray to dark yellowish<br>a super saturated interval from | 2209           |                            |  |
| 55-<br>60-       |                      |                      | 11         | 100        | BG<br>BG     | 9-9-9-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | GM         | Sand, fine to coars<br>dark yellowish oran                                                                                      | se with gravel, very pale to<br>ige, wet.                                                                                                                                                                                       |                | 40 PVC and 8" steel casing |  |
| 65-              |                      |                      | 13         | 100        | BG           | 2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 |            |                                                                                                                                 | e, trace silt, gravelly, gravel<br>nd number between 70'–75'.<br>ish orange, wet.                                                                                                                                               |                | 7" 10, Sch.                |  |
| 75-              |                      |                      | 15         | 95         | BG<br>BG     | 0 0 0 0<br>0 0 0 0                      | SP         | Same as above exc<br>less gravel.                                                                                               | ept a much cleaner sand,                                                                                                                                                                                                        | 193.9          | 10/20 sand >+- A >+        |  |

| EnSafe/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | llen & Ho                        | Monitoring Well 60MW03LF<br>Boring 60S0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: NAS Memphis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Location: Milington TN. SWMU#60 - North Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Project No.: NOO94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | Surface Elevation: 268.90 feet ms/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Started at 1330 on 2-01-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | TOC Elevation: 27152 feet msl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Completed at 1630 on 2-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>-95</i><br>                   | Depth to Groundwater: 20.02 feet Measured: 3/31/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Driting Method: Rotasonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | Groundwater Elevation: 25150 feet msl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drilling Company: North Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | Total Depth: 95.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Geologist: Jack Carmichael                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>1 1 1</del>                 | Well Screen: 77 to 87 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DEPTH IN FEET LITHOLOGIC SAMPLE ANALYTICAL SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE S | PIO (ppm) GRAPHIC LOG SOIL CLASS | GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION  GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90- 18 110 110 110 115- 115- 115- 115- 115- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BG CL BG                         | Silt, clayey, grayish brown, stiff, mottled with laminations towards the end of the run.    Silt, clayey, grayish brown, stiff, mottled with laminations towards the end of the run.   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   Silt   S |

| EnS                                        | afe,                 | /AI        | len         | &           | Нс         | shall                                                             | Monitoring W<br>Boring 6                                                                                                       | ell 6<br>050   | OMW04LF<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|----------------------|------------|-------------|-------------|------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: NAS                               | : Memph              | is         |             |             |            |                                                                   | Location: Memphis, TN                                                                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project No.:                               |                      |            |             |             |            |                                                                   | Surface Elevation: 269.67 feet ms/                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Started at 0                               | 915 on 1-            | -31-95     |             |             |            |                                                                   | TOC Elevation: 272.20 feet ms/                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Completed at                               | 1215 an              | 2-08-      | -95         |             |            |                                                                   | Depth to Groundwater: 20.70 fe                                                                                                 | æt             | Measured: 3/31/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drilling Metho                             | i Rota               | sonic      |             |             |            | <del></del>                                                       | Groundwater Elevation: 25161 fe                                                                                                | -              | 0,0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dritting Compa                             | ny: Nor              | th Sta     | r Drilling  | 7           |            |                                                                   | Total Depth: 96.0 feet                                                                                                         |                | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Geologist: Ja                              | ck Carm              | ichael     | •           |             |            |                                                                   | Well Screen: 86 to 96 feet                                                                                                     | _              | ,,, <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DEPTH IN FEET LITHOLOGIC SAMPLE ANALYTICAL | SAMPLE<br>SAMPLE NO. | % RECOVERY | PID (ppm)   | GRAPHIC LOG | SOIL CLASS | GEOLO                                                             | OGIC DESCRIPTION                                                                                                               | ELEV. (ft-msl) | WELL DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10                                         | 2                    | 80         | BG<br>BG    |             | ML         | very dry.  Silt, moderate yello organics. Wet from 9'-10', moist. | wish brown with organics, wish brown with fewer 5'-9', but becomes wet at  ay, moist down to 20.5 then e iron staining at 27'. |                | 2" ID, Sch. 40 PVC and 8" steel casing ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35-                                        | 5                    | 90         | 2.9<br>60.2 |             |            | Silt, moderate yellow<br>moist.                                   | vish brown dry to slightly                                                                                                     |                | The Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Same of the Sa |

|                  | Ens             | Sai    | fe,  | /AI    | llen     | &                                        | Нс         | oshall                               | Monitoring Well 60MW04LF<br>Boring 60S0004                                                                               |               |                                                                             |  |  |
|------------------|-----------------|--------|------|--------|----------|------------------------------------------|------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|--|--|
| Pro              | ject: ^         | VAS M  | emph | is     |          |                                          |            |                                      | Location: Memphis, TN                                                                                                    |               |                                                                             |  |  |
| Pro              | ject No         | or WO  | 094  |        |          |                                          |            |                                      | Surface Elevation: 269.67 feet msl                                                                                       |               |                                                                             |  |  |
|                  | rted at         |        |      |        |          |                                          |            |                                      | TOC Elevation: 27220 feet ms                                                                                             | /             |                                                                             |  |  |
| Con              | npleted         | at 121 | 5 an | 2-08   | -95      |                                          |            |                                      | Depth to Groundwater: 20.70 f                                                                                            | feet          | Measured: 3/31/95                                                           |  |  |
|                  | ing Met         |        |      |        |          |                                          |            |                                      | Groundwater Elevation: 25161 feet msl                                                                                    |               |                                                                             |  |  |
|                  | ing Corr        |        |      |        |          | g                                        | _          |                                      | Total Depth: 96.0 feet                                                                                                   |               |                                                                             |  |  |
| Geo              | ologist:        | Jack   | Carm | ichael | <u>'</u> | 1- 1                                     |            |                                      | Well Screen: 86 to 96 feet                                                                                               |               |                                                                             |  |  |
| DEPTH<br>IN FEET | GIC CAL CAL LOG |        |      |        |          | GRAPHIC LOG                              | SOIL CLASS | GEOLG                                | OGIC DESCRIPTION                                                                                                         | ELEV. (ft-ms) | WELL DIAGRAM                                                                |  |  |
| 55-              |                 |        | 9 10 | 90     | BG<br>BG | 20-00-00-00-00-00-00-00-00-00-00-00-00-0 | ML         | 51.5'-52'. Grayish I<br>orange, wet. | with clayey gravel seam at brown to dark yellowish silty. Color change from ish green, then becoming ge at 58'-65', wet. | 224.7         | 2" ID, Sch. 40 PVC and 8" steel casing ———————————————————————————————————— |  |  |
| 70-              |                 |        | 13   | 95     | BG<br>BG | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    |            | change to yellowish                  | crease and color starting to orange.                                                                                     |               | munimummummmmmmmmmmmmmmmmmmmmmmmmmmmmmm                                     |  |  |
| 80               |                 |        | 9    | 100    | BG       |                                          | _          | grayish orange.                      | - C C C                                                                                                                  |               |                                                                             |  |  |

|                     | Ens                  | Sai                  | fe         | /All       | len       | &                                       | Н          | oshall                                                                                                    | Monitoring Well 60MW04LF<br>Boring 60S0004                                                            |  |  |  |  |
|---------------------|----------------------|----------------------|------------|------------|-----------|-----------------------------------------|------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pro                 | ject: Λ              | IAS M                | этрі:      | 5          |           |                                         |            |                                                                                                           | Location: Memphis, TN                                                                                 |  |  |  |  |
| Pro                 | ject No              | : NO                 | 094        |            |           |                                         |            |                                                                                                           | Surface Elevation: 269.67 feet msl                                                                    |  |  |  |  |
|                     | rted at              |                      |            |            |           |                                         |            |                                                                                                           | TOC Elevation: 272.20 feet msl                                                                        |  |  |  |  |
| Con                 | npleted              | at 12                | 15 an .    | 2-08-      | 95        |                                         |            |                                                                                                           | Depth to Groundwater: 20.70 feet Measured: 3/31/95                                                    |  |  |  |  |
| Drit                | ng Metl              | hod:                 | Rotas      | onic       |           |                                         |            |                                                                                                           | Groundwater Elevation: 251.61 feet msl                                                                |  |  |  |  |
| Driff               | ing Com              | pany:                | Non        | th Star    | Drillin,  | g                                       |            |                                                                                                           | Total Depth: 96.0 feet                                                                                |  |  |  |  |
| Ged                 | ologist:             | Jack                 | Carm       | chael      |           |                                         |            |                                                                                                           | Well Screen: 86 to 96 feet                                                                            |  |  |  |  |
| DEPTH<br>IN FEET    | LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE | SAMPLE NO. | % RECOVERY | PID (ppm) | GRAPHIC LOG                             | SOIL CLASS |                                                                                                           | MELL DIAGRAM                                                                                          |  |  |  |  |
| 90-<br>100-<br>115- |                      |                      | 10         | 87.5       | BG        | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | GM         | diameter towards t<br>yellowish orange and<br>Gravel, sandy, silty<br>Cobbles up to 3" in<br>orange, wet. | with small amounts of clay. diameter, very dark yellowish  dish brown stained, lower le brown, moist. |  |  |  |  |

|                  | En                                                                                       | Sa         | fe         | /Ai        | ller          | 7 6        | 3 Н          | 'oshall                                                          | Monitoring Well 60MW05LS<br>Boring 60S0005                                                                                                                |                |                                        |  |  |
|------------------|------------------------------------------------------------------------------------------|------------|------------|------------|---------------|------------|--------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|--|--|
| Pro              | ject:                                                                                    | NAS I      | vlempt     | y's        |               |            |              |                                                                  | Location: Milington, TN. SWMU#60 - North Landfill                                                                                                         |                |                                        |  |  |
|                  | ject N                                                                                   |            |            |            |               |            |              |                                                                  | Surface Elevation: 269.75 feet msl                                                                                                                        |                |                                        |  |  |
| <b>—</b>         |                                                                                          |            |            | 2-13-      |               |            |              |                                                                  | TOC Elevation: 27188 feet msl                                                                                                                             |                |                                        |  |  |
| Con              | nplete                                                                                   | d at (     | 900        | on 2-1     | 3- <i>9</i> 5 |            |              |                                                                  | Depth to Groundwater: 4.09 fe                                                                                                                             | et             | Measured: 3/31/95                      |  |  |
|                  | ing Me                                                                                   |            |            |            |               |            |              |                                                                  | Groundwater Elevation: 267.89                                                                                                                             | feet ms/       |                                        |  |  |
|                  |                                                                                          |            |            | rth Sta    | ar Drilli     | ng_        |              |                                                                  | Total Depth: 20.0 feet                                                                                                                                    |                |                                        |  |  |
| Geo              | plogist                                                                                  | : Jac      | Υ C.       |            | <del></del>   | _          | <del>-</del> | <u> </u>                                                         | Well Screen: 10 to 20 feet                                                                                                                                |                | <del></del>                            |  |  |
| DEPTH<br>IN FEET | LITHOLOGIC                                                                               | ANALYTICAL | SAMPLE NO. | * RECOVERY | PID (ppm)     | GRAPHICIOS | SOUTH OF ASS | GEOL(                                                            | OGIC DESCRIPTION                                                                                                                                          | ELEV. (ft-msl) | WELL DIAGRAM                           |  |  |
|                  | Λ.                                                                                       | 1          |            |            |               |            |              | Fill, dark brown silt                                            | with scattered gravel.                                                                                                                                    |                |                                        |  |  |
| 5-               | Silt, clayey, soft ligorange, mottled, da finely laminated.  Silt, clay, greenish        |            |            |            |               |            |              | orange, mottled, da<br>finely laminated.<br>Silt, clay, greenish | ght olive gray to grayish<br>ark brown inclusions, moist,<br>gray, mottled dark yellowish                                                                 |                | ************************************** |  |  |
| 10-              | orange, laminate Silt, clay, grayis orange, laminate moist.  80 BG ML Silt, clayey, pale |            |            |            |               |            | ML           | Silt, clay, grayish orange, laminated with moist.                | clay, greenish gray, mottled dark yellowish ge, laminated, soft, moist.  clay, grayish orange mottled yellowish ge, laminated with dark inclusions, soft, |                |                                        |  |  |
| 15-              |                                                                                          |            |            |            |               |            |              | Silt, clayey, pale yo<br>stained yellowish o                     | rellowish brown, becoming orange from 18'-19'.                                                                                                            |                |                                        |  |  |
| 20               |                                                                                          |            | 4          | 80         | BG            |            |              | Silt, clayey, medium                                             | gray, massive, moist.                                                                                                                                     | 249.7          |                                        |  |  |
| 25-              |                                                                                          |            |            |            |               |            |              | BG = Background (                                                | 1.1 ppm)                                                                                                                                                  |                |                                        |  |  |
| 30-              |                                                                                          |            |            |            |               |            |              |                                                                  |                                                                                                                                                           |                |                                        |  |  |
| 35-              |                                                                                          |            |            |            |               |            |              |                                                                  |                                                                                                                                                           |                |                                        |  |  |
| 40-              |                                                                                          |            |            |            |               |            |              |                                                                  |                                                                                                                                                           |                |                                        |  |  |

| EnSafe/Allen & Hoshall |                                          |               |       |                 |             |   |   |                                                        |                       | Monitoring Well 60MW06LS<br>Boring 60S0006        |          |                                                           |  |
|------------------------|------------------------------------------|---------------|-------|-----------------|-------------|---|---|--------------------------------------------------------|-----------------------|---------------------------------------------------|----------|-----------------------------------------------------------|--|
| Pro                    | ject: /                                  | VAS M         | emph  | is              |             |   |   |                                                        |                       | Location: Milington, TN. SWMU#60 - North Landfill |          |                                                           |  |
|                        | ject No                                  |               |       |                 |             |   |   |                                                        |                       | Surface Elevation: 269.58 feet                    | ms/      |                                                           |  |
| Sta                    | rted a                                   | t <i>1020</i> | on 2  | -13-9:          | 5           |   |   |                                                        |                       | TOC Elevation: 271.98 feet msl                    |          | ·- · · · · · · · · · · · · · · · · · ·                    |  |
| Con                    | npletec                                  | 1 at 10       | 50 or | 1 <i>2–13</i> - | <b>-9</b> 5 |   |   |                                                        |                       | Depth to Groundwater: 3.37 fee                    | t        | Measured: 3/31/95                                         |  |
| Dritti                 | ing Met                                  | hod           | Rotas | sonic           |             |   |   |                                                        |                       | Groundwater Elevation: 268.58                     | feet msl |                                                           |  |
| Dritt                  | ng Con                                   | npany         | Nor   | th Sta          | r Drillir   | g |   |                                                        |                       | Total Depth: 20.0 feet                            |          |                                                           |  |
| Geo                    | ologist:                                 | Jack          | Carm  | ichael          |             |   | _ |                                                        |                       | Well Screen: 10 to 20 feet                        |          |                                                           |  |
| DEPTH<br>IN FEET       | GICAL ICAL ICAL ICAL ICAL ICAL ICAL ICAL |               |       |                 |             |   |   | SOIL CLASS                                             | GEOL                  | OGIC DESCRIPTION  WELL DIAGRAM                    |          |                                                           |  |
| ì                      | $\Lambda$                                |               |       |                 |             |   |   |                                                        | Fill, dark brown silt | with scattered gravel.                            | _        |                                                           |  |
| 5-                     |                                          |               | 1     | 40              | BG          |   |   |                                                        | No sample descript    | ion; poor recovery.                               |          | 2" ID, Sch. 40 PVC  ***********************************   |  |
|                        |                                          |               |       |                 |             |   |   |                                                        | orange, mottled bro   | yellowish brown, laminated                        |          | 2" ID, Sct                                                |  |
| 10-                    |                                          |               | 2     | 133             | BG          |   |   | ML                                                     | yellowish orange fr   | , becoming stained dark<br>om 12.5'-13'.          |          | 0.01 slot, PVC screen ——————————————————————————————————— |  |
| 15-                    |                                          |               |       |                 |             |   | 1 | ate yellowish brown mottled s, finely laminated, soft. |                       |                                                   |          |                                                           |  |
|                        | X                                        |               |       |                 |             |   |   |                                                        | Silt, clayey, medium  | gray, moist, soft.                                |          | 0.01 sk                                                   |  |
| 20-                    |                                          |               | 4     | 100             | BG          |   |   |                                                        |                       |                                                   | 249.6    |                                                           |  |
| 25-                    |                                          |               |       |                 |             |   |   |                                                        | BG = Background (     | 1.1 ppm)                                          |          |                                                           |  |
| 30-                    |                                          |               |       |                 |             |   |   |                                                        |                       |                                                   |          |                                                           |  |
| 35-                    |                                          |               |       |                 |             |   |   |                                                        |                       | ·                                                 |          |                                                           |  |
| 40-                    |                                          |               |       |                 |             |   |   |                                                        |                       |                                                   |          |                                                           |  |

|                         | Ens                  | Sa                                       | fe,           | /Al        | len              | &           | Н          | oshall                                                                                   | Monitoring Well 60MW04LS                                                                                     |              |                                                                                    |  |  |
|-------------------------|----------------------|------------------------------------------|---------------|------------|------------------|-------------|------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|--|--|
| Pro                     | ject: /              | VAS M                                    | lemoh         | is         |                  |             |            | <del></del>                                                                              | Location: Milington, TN. SWMU#60 - North Landfill                                                            |              |                                                                                    |  |  |
|                         | ject No              |                                          |               |            |                  |             |            |                                                                                          | Surface Elevation: 269.57 fee                                                                                |              |                                                                                    |  |  |
|                         | rted a               |                                          |               | -31-95     | ,                |             |            |                                                                                          | TOC Elevation: 27211 feet ms/                                                                                |              |                                                                                    |  |  |
| Con                     | npletec              | at 12                                    | 15 <b>o</b> n | 1-31-9     | <b>35</b>        |             |            |                                                                                          | Depth to Groundwater: 4.95 fe                                                                                | et           | Measured: 3/31/95                                                                  |  |  |
| Drin                    | ing Met              | hod                                      | Rota          | sonic      |                  |             |            |                                                                                          | Groundwater Elevation: 267.16                                                                                | feet ms/     |                                                                                    |  |  |
| Orilli                  | ing Con              | npany                                    | : Nor         | th Sta     | r Drillin        | g           |            |                                                                                          | Total Depth: 20.0 feet                                                                                       |              |                                                                                    |  |  |
| Geo                     | ologist:             | Ryar                                     | Liste         | er         |                  |             |            |                                                                                          | Well Screen: 10 to 20 feet                                                                                   |              |                                                                                    |  |  |
| DEPTH<br>IN FEET        | LITHOLOGIC<br>SAMPLE | ANALYTICAL<br>SAMPLE                     | SAMPLE NO.    | % RECOVERY | PID (ppm)        | GRAPHIC LOG | SOIL CLASS | GEOLO                                                                                    | OGIC DESCRIPTION                                                                                             | WELL DIAGRAM |                                                                                    |  |  |
| 5-<br>10-<br>20-<br>35- | NI SW                | AN AN AN AN AN AN AN AN AN AN AN AN AN A | 1 2 3 4       | 80         | BG<br>BG<br>80.1 | GR          | ML         | Silt, moderate yello organics. Wet from 9'-10'.  Silt, medium light gradecoming dry. Som | ay, moist down to 20.5 then e iron staining at 27'.  C'. Geologic description and are taken from paired well | 249.6        | ← 0.01 slot, PVC screen → 2" ID, Sch. 40 PVC — 11111111111111111111111111111111111 |  |  |

## Attachment 3 Dieldrin Technical Memorandum

## DISCUSSION OF DIELDRIN RISK MANAGEMENT ISSUES

Chlorinated pesticides (specifically dieldrin) were used extensively in the 1950s and 1960s during a white fringed beetle quarantine. NAS Memphis has record that the agents were applied aerially for their intended purpose over the majority of the base. During the RCRA Facility Investigation, dieldrin and other chlorinated pesticides were detected in most surface soil and some vadose soil samples collected at specific SWMUs and background locations. Due to the ubiquitous presence of dieldrin in site soils, the following assessment was performed to support risk management decisions to be made by the BCT.

Figure 1 shows reported surface (0-1 ft.) soil dieldrin concentrations across the northern portion of the base. As shown in the figure, levels at SWMUs ranged from below quantitation limits to 609  $\mu$ g/kg (average of duplicate results at SWMU 5, boring 4). At background locations, concentrations ranged from below quantitation limits to 311  $\mu$ g/kg with a mean of 131  $\mu$ g/kg.

In order to provide an evaluation of the significance of the reported levels, standard risk assessment methods were employed. Default assumptions for residential and occupational exposure scenarios were used to project dieldrin-related carcinogenic risk through incidental ingestion and dermal contact soil pathways. For each exposure scenario, risk was computed using the maximum and mean SWMU-specific dieldrin concentrations. The results of this process are provided in the attached table.

As shown in the table, SWMU 5 had the highest projected soil pathway risk associated with dieldrin at maximum concentrations (2.2E-5). The SWMU 5 risk estimate was approximately twice that of the corresponding background. When mean concentrations were used as the exposure point concentration, SWMU 8 dieldrin risk was found to be the highest although it did not differ appreciably from background. In no instance (onsite or background) did dieldrin risk projections exceed 1E-4. This finding indicates that dieldrin levels found at each SWMU do not necessitate remedial action in the absence of other significant carcinogenic risk contributors. USEPA's generally acceptable range for carcinogenic risk is 1E-4 to 1E-6.

Soil dieldrin is not expected to pose a substantial threat to shallow groundwater at any SWMU or background location. This conclusion is based on the strong soil binding properties of the compound as well as empirical data for vadose soils which show no significant vertical migration has occurred.

A historical use discussion is also helpful to provide a frame of reference for evaluating reported soil dieldrin (and other chlorinated pesticide) concentrations. Information provided by NAS Memphis states that chlorinated pesticides (primarily chlordane) were previously used until the late 1980's for termite control around buildings. Although chlordane was used as a single active ingredient application, mixtures including dieldrin, aldrin and heptachlor

were also common in the pest control trade. Standard application rates resulted in soil concentrations of 500 to 1,000 mg/kg total chlorinated pesticides (or 500,000  $\mu$ g/kg to 1,000,000  $\mu$ g/kg). For comparison, a 10:1 chlordane:dieldrin mixture used for general subterranean termite control would have resulted in residual soil dieldrin concentration of 50 to 100 mg/kg. These residual application levels are 50 to 100 times higher than the maximum soil dieldrin concentration reported in the RFI.

It should be mentioned that Aroclor-1260 (a polychlorinated biphenyl or PCB) was detected in four soil samples collected at SWMU 5 and one sample from SWMU 7. In each instance, dieldrin was also detected although no strong concentration correlation was observed. Concentrations at SWMU 5 ranged from non-detect to 223  $\mu$ g/kg. The single hit reported at SWMU 7 was 20,000  $\mu$ g/kg in the boring 7 surface soil sample. Boring 7 at SWMU 7 is actually closer to Building N-16. As a result, the RFI workplan for N-16 should include provisions for further delineating the soil PCB contamination.

This memo was intended to provide a risk-based framework for decision making regarding how the dieldrin issue is resolved. Although standard risk assessment techniques were applied, final resolution of this issue will require a consensus risk management decision. Of paramount importance is the determination of what level of risk is acceptable in light of the extent of the dieldrin. EnSafe/Allen & Hoshall as the contractor can only provide the facts and suggestions for a viable risk management strategy. The following paragraph outlines suggestions based on currently available information and the preceding risk evaluation.

Due to the ubiquitous presence and documented proper historical use, institutional controls are considered the most appropriate means of dealing with the dieldrin issue from a human health perspective. These controls may include (but are not limited to) public/worker awareness, access restrictions and maintenance of adequate vegetative cover to minimize contact. The focus of future investigative efforts should center around prevention of further migration (i.e. surface runoff) and evaluation of sensitive ecological receptor points (i.e. terrestrial habitats, drainage systems, streams, lakes and pond). These areas should be emphasized as little control can be exercised over the animals who use them.

NAS-Memphis Dieldrin Risk Projections

| Location   | Maximum<br>Dieldrin<br>(mg/kg) | Mean<br>Dieldrin<br>(mg/kg) | Residentia<br>@ Max | @Mean    | Industrial<br>@ Max | @Mean    |
|------------|--------------------------------|-----------------------------|---------------------|----------|---------------------|----------|
| SWMU 1     | 0.192                          | NA                          | 7.04E-06            | NA       | 1.12E-06            | NA       |
| SWMU 3     | 0.023                          | 0.0072                      | 8.43E-07            | 2.64E-07 | 1.34E-07            | 4.19E-08 |
| SWMU 5     | 0.609                          | 0.126                       | 2.23E-05            | 4.62E-06 | 3.54E-06            | 7.33E-07 |
| SWMU 7     | 0.055                          | 0.0095                      | 2.02E-06            | 3.48E-07 | 3.2E-07             | 5.52E-08 |
| SWMU 8     | 0.471                          | 0.144                       | 1.73E-05            | 5.28E-06 | 2.74E-06            | 8.37E-07 |
| SWMU 60    | 0.069                          | 0.0155                      | 2.53E-06            | 5.68E-07 | 4.01E-07            | 9.01E-08 |
| Background | 0.311                          | 0.131                       | 1.14E-05            | 4.8E-06  | 1.81E-06            | 7.62E-07 |

Oral Slope Factor

(mg/kg-d)-1

16